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Approx1mat10n Methods in Optlmal and Adaptive Control
J. H WESTCOTT, J.J. FLORENTIN and J. D. PEARSON

Introductibn

Both optimal and adaptive control problems can now be treated
by the same decision theory approach!. Typical practical prob-
Jems can be formulated in the required mathematical terms, but
at present there is still difficulty in determining actual numerical
solutions to problems of realistic size and complexity. It seems
likely that a variety of approximate computation techniques will
be developed, each with a restricted range of application.
Approximation is necessary due to the very extensive cal-
_ culation called for, using multi-stage decision methods. These

become sufficiently time-consuming, even when performed at

. the fast speeds of modern digital computers, for abbreviation to
be necessary. Approximation becomes attractive due to the

limited time allowable on the time scale of the dynamic process -

it is desired to control.

- Approximation may be attempted. elther in the settmg up of
a particular problem or duririg the numerical process of solution.
Whilst approximations'in the setting up procedure are some-
what difficult to treat analytically they are likely to be important
in’ practical applications of decision theory, and a worked
example is presented to demonstrate some aspects of this. In
numerical techniques two~ broad approaches can be distin-
guished—trajectory .and function space methods. Certain ap-

" proximation techniques in both these classes are discussed and
illustrated with simple examples.”

Review of Basic Equations

‘To introduce the approach and notation, a brief review of the
basic equations will be given. More complete derivations can be
found! 2, The complete system including inputs must first be
described by a set of state coordinates x (£). These are an absolute
description of the system at the time instant ¢. The state co-
ordinates may be obvious physical quantities such as position
or velogity, or may be statistical quantities such as the mean
and the variance. The motion of the system is conveniently

described by a set of first order vector differential equations:
™

x'=A(x,u,1) W

~ where u is a vector of control variables. For reasons of simplicity
no random components are included.

An optimal control function u(r) is to be found which
~ maximizes or minimizes a given performance index, subject to
constraints. Typically the performance ‘index will be a path
integral over a defined time intervalt, T with the system starting
at a given position x. Here the-performance mdex will be
defined as . .

£ (x(0), )=min f T‘L(x, 7.0 di o

Isolating a small part of the time interval t,T, it can be seen®
that the following problem is equivalent to (2)

, 4+ A v
f(x(t),t)='min|:J‘ L(x,u,}t)d/l+f(x(t+A),t+A)] 3). -

t

Using a Taylor series expansion for the third term, a partiai
dxﬂ‘erentnal equation for the performance index can be found in
the form

c i_—'mm[Ag—f+L] @)

.The solution of this partial differential equation reveals the per-

formance index as a function of the initial position and time
intérval. The minimizing control law u(?) can be found as a
function of the partial derivatives of f.

With appropriate modifications analogous equations can be
developed for discrete time systems and for those containing
random elements. When there are random elements the per-
formance index must be changed to an ensemble average of
path integrals®.

For deterministic systems eqn (3) can be expressed in an
alternative form by taking its characteristics. Define the func-
tion Has _ -

of \ &, of ~ '
H(x,—g, t)--— - iaxi +L ‘ (5)

Employing the normal theory of partial differential equations,
a new set of variables, p,, is defined with a vector p = 0f0x.
The set of equations for the characteristics is then

oH oH ,
o ‘ x—a P—"a _ (6)

To solve these equations the boundary conditions of the p or
co-state variables are required. As derived by Rozonoer?, the
problem can correspond either to a fixed end point variational
problem in which : =

x(T) known p(T) unknown (7)

or to a free end point variational proBlem in which

x(T) may be chosen

value one.

- Computational Methods

Eqns (3) and (6) give rise to two families of computationial

- techniques: The first is of wide application, it computes f(x,?)
over the x space at successive time intervals, z,. It will bé termed
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the function space method. A predominant difficuity in the func-
tion space approach is that of storing a multi-dimensional func-
tion in a digital computer. The obvious methods become pro-
hibitive, since for a three-dimensional function with a hundred
points in each dlmensmn a storage space of. 10“ words would be
-necessaty.
The second method applies orily to determm;stlc systems and

is fermed the trajectory method. Only half of the boundary

conditions at each end of the trajectory are known and the usual
dxmcultxes are encountered.

Setﬁng Up Problems

+In practical situations the problem of control is usually not
completely defined. Ih many cases it is possible to compiete the
specification by the selection of constraints which enable a
sxmpler solution to be achieved than would otherwise be pos-
sible. The factors which can most usefully and easily be varied
are the mathematical form of the performance index, the precise
specification of the contro] constraints, and the selection of
continuous or discrete time working.
To illustrate the effects of varying the formulation consider
a typical non-linear problem. A vehicle, moving with constant
velocity v in the x,, x, phase plane, is to'be guided from an
initial ‘point P to a final target O. Guidance is affected by ad-
justing the rate of turn of the vehicle. For practical reasons the
* maximum rate of turn ‘is constrained. In accordance with
ﬂgure 1 the dynamxc equations of the problem are:

x1=vcosx;;
x¢=vsm X3 M
x3=u

where xg is the angle the velocity vector makes with the x, axis.

Minimum Time Trajectories
-Take the performance index to-be *

f(.e; t)=minUrh-dt:|

with the definition # =0 in a region surrounding the ongm
and h = 1 elsewhere.
olhpwing the usual formulation

H=mm[h+p1 vcosx3+pzvsmx3+p3 u]

léadmg to ﬁhe optimal # being

u= —sign(ps) " |u]<2

The trajectory equations follow from the charactensucs of H
_ahd reveal that since

. pi=py=0
py=pyvsinx;— (10)

the optimal trajectories are composed of straight lm&s and circles
d@mdmg on the boundary conditions of py and p,.
Asa physwal consideration the additional definition of

sign(0)=0-

P2 VCOS X3

minimizes the number of switchings in % and the control is one
commonly termed ‘bang-bang’, For the chosen initial point P
the optimal trajectories are at 4 in Figures 2 and 3. The vehicle
reached the origin 0 in 3-24 sec.

. Minimum Energy Trajectories

If the performance ittdex is taken to be

[T u?
J(x, t)=m“1nU' (h+—‘2—‘;)dl:|

 with » as a yet unchosen Lagrange multiplier, the optimum u«

is u = — » p;. The trajectories equations are unchanged. At the
terminal point 0, the x, boundary is unspecified and conse-.
quently p, and « are zero. To the first order of approxxmattons
along the trajectory through the origin

d cdx,
df=%’cos X3 +d—v‘3sm X3
and hence
of - COSX3

=P

af N sin xg
ox, v -

ox, P v

. The problem of solving the trajectory equations reduces to the

selection of a terminal x; and adjusting it until the initial
boundary values are satisfied. For the given values of » = 3 the
optimal trajectories are shown at B in Figures 2 and. 3 _The
system reached the origin from P ift 3-27 sec.

Minimum Squared Deviation and Control Energy
The performance index is taken to be

‘ T 1 uZ
f(x-,r):j ——2—<x’f+x§+7)dl

from which the optimal control is unchanged at u = » p,.
However, the’ trajectory equatlons are now

Pi=—X
P2=—%;
pi&p,Vsinxs—p,Vcosx,
with free boundary value conditions.
“The computational problem is not attractive in this case
because at the terminal point, pg’ is very nearly always zero and
tends-to be influenced by rounding errors. The optimal trajector-

ies are shown at C in Figures 2 and 3 and the optimal time to
reach the origin was 3-29 sec.

N

. Minimum Squared Miss Distance

The performance index is takerl to be

: Tyt 1, ) R

f(x, t.)=minU- —d]+—x§ (T)+5-%3(T)
» LJe 2 2 2

resulting in the same cohttol signal ¥ = — » p,. The trajectory
equations are those of (10) and (9) and the boundary conditions
are clearly p, (T) = %y, py, (T) = Xy, ps (T) = 0. Simce the target
at 0 is the origin these values closely approximate those for the
minimum energy trajectory presented eatlier in this paper. The
optimal solutions are those for C in Figures 2 and 3 obtained
for » = 100, and the minimum time achieved was 3 27 sec.
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Summary of Formulations

~ Comparing the energy used in each of the four schemes
“reveals that apart from the minimum time trajectory there was
little difference. The minimum time control scheme used 2-16
units as opposed to a minimum energy formulation using
1-23 units.

The insensitivity of the solution to the formulation suggests
that the performance index producing the most tractible set

of equations should be employed. In this example the minimum

time solution is a geometric exercise, whilst the formulation of
the minimum squared deviation and control energy generated
a rather troublesome set of equations from the numerical point
of view. Clearly, in general, there is room for experiment within
the constraints of the problem.

Approximation Method for Boundar')" Value Problems

Since the trajectory methods lead to two point boundary
value problems, methods for dealing with these are receiving
a great deal of attention. Boundary value problems are far older
than numerical variational methods, and many well established
techniques exist in numerical practice. It is essential to disting-
uish between the time available for calculations which are of a
design nature, and those that are undertaken during the control
of the physical process. Real time work places a heavy penalty
on inefficient computational techniques, and boundary value
methods tend to be among the most inefficient.

Refining Techniques

Free boundary value problems of the type of eqn (8) lend
theémselves to reverse time computation from the guessed target
position at time 7. However, owing to the extreme sensitivity
of the solutions and to some troublesome numerical details, it
proves far simpler to work forwards from the initial time £.
Consider the boundary value problem of eqn (8) and assume
that it is possible to proceed by guessing the initial value of
P () and adjusting this according to the error at the terminus.
Represent the solution (6) for the terminal value of p by

p(M=¥[p(®),x®);1,T] )

If the initial value is correctly chosen then, clearly, 1[1 will be
zero. Furthermore, if T is extended, the change in the correct
p (9) will satisfy the differential equation

oY,

.dp () 8Y _
[ap,. (t)i| ar tar =0

oT
However, although boundary values for these equations are
known the matrix [0 ¥;/0 p;] is not. In general p (T) will be
non-zero at time T and the magnitude of its error can be evaluated
*by some arbitrary definite function 7 [p (f)] of the terminal
boundary values. Small perturbations in the initial value p (#)
will effect the value of n according to-the expansion :

(12)

n(p+4p)= n(p)+Z Ap.+0(A ) (13)
However, since » can be defined to have a minimum when
the boundary value is satisfied, a correction scheme can be found

by differentiation with respect to one of the p;:
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: b= op; _aif

and the corrected value of p; will be p; + A p;. The drawback
of this simple approach is that the instability of the trajectory
equations usually makes any function n extremely large and
grossly sensitive to perturbations. It is, however, very simple
and easy to code into a routine which could deal with all cases
likely to arise in practice.

One way of overcoming this is to reduce substantially the
time interval T—¢. Clearly if this interval were zero the boundary
values are known to be zero and consequently for a small
interval a good estimate is-available. Thus the procedure is to
start with a small value 7-t, perturb each of the p co-ordinates -
in turn, applying eqn (14) to reduce p (t') to zero, ¢’ being the
temporary value of 7. After one cycle of the perturbations it is
essential to rotate the axis of the:perturbation coordinates to
make them lie along the direction of grad n. Having solved the
first stage over the redaced interval, it can be extended and the
process repeated. As the next guess for the boundary values
either the previous value can be used or it can be up-dated with
a crude solution of eqn (12). The matrix [0 ¥,/ p,] is now

(14

. available from the results of the previous Rerturbations and is

invertible.

Proceeding in this way, the optimal trajectory can be pro-
gressively extended until it covers the given time interval.
However, it may happen that some physical condition is satisfied

. before the full time, i.e. the target region, is entered, and then the

computation can be terminated earlier with consequent economy.
This procedure has the advantage that during real time com-
putation a ‘part-time’ optimal solution is always available for
the current position and this can be used as an approximation
while its up-dated value is refined. It has the disadvantage that
errors in the numerical integration tend to disguise the mlmmum
sought for, and then increase with 7-r.

A Boundary Value Example

The method can be illustrated by an example whose non-
linearitiés cause difficulties with the more conventional tech-
niques. Consider.a dynamic system of the pendulum type

x' =) +x=u

(15)

Select the control law u to minimize the pé\rformance index

' 1T .
f(x,1, T)=7f (xi+x3+u?)dt (16)
. .
The dynamic system is controllable only in the absence of limits
on u. Transforming to the usual phase coordinates and forming
the optimal equations yields the set

X; =X,

x:2=x%—x1—Pz (17
PL=X1+ps

P2=—X;—Pp1—2X,;p;

If the end point is considered to be free, then the boundary
values are p (T) zero. Direct computation of the trajectories
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backwards from the terminal region surrounding the origin.

- reveals an optimum phase portrait of Figure 5. It shows that
it is difficult to reach the chosen initial point (x;.= 1, x2 = 0)

because of the sensifivity of the trajectories.
At the origin the non-linear system behaves as the linear one:

! x'=4-x

" -The solution of this system as f tends to infinity, is dommated

by that of the largest positive eigenvalue of A4, and lies parallel
to the corresponding eigenvector. Thus all solutions tend to the
one eigenvector through the origin and this implies extreme
sensitivity when working in reverse time scale from the origin.

Using the technique described, which has been programmed

_into a series of short routines for the Ferranti Mercury computer,
a trajectory can be found which satisfies any initial conditions
" and boundary values. Figure 6 gives the final trajectory and also

the variation of the end point x (7) with the time interval 7-¢

given in Figure 7. Figure 8 shows how the computed finite time _

boundary valugs tend to the Hamiltonian surface £ = 0 satlsﬁed
for the infinite interval.

Function Space Approximations

Function space methods are an alternative to trajectory
methods in deterministic systems, but are the only approach in
systems containing random components. In some systems the
algebraic form of f(x, ¢) is known in advance and the com-
putational formulae may then be put into discrete or continuous
time form, whichever is most convienient. However, when the

. form of f(x, ) is unknown, only discrete time computing form-

ulae are feasible. This is usually the situation in vadaptive systems.

A Function Space Approximation for an Adaptlve System

To illustrate the use of function space approximations
consider the following example. A. simple regulator contains
a fixed unknown gain «, in the control path (Figure 9). The
system is disturbed by a noise {£,} which is an iridependent
gaussian sequence with zero mean and'variance ¢. In order to
set up the problem to lead to a discrete time computing formulae
it is assumed that the control is changed only at unit time inter-
vals, when x is also observed. The dynamxc equatlon for the
regulator is

Xn= n—1_+“un—1+€n—l (18)

The unknown gain « is re-estimated after each observation of x,
the estimation being made according to the Bayesien formula,

posterior density = likelihood x prior denéity (19)
Since [£,] is an independent gaussian sequence, the successive

‘posterior densities can be made gaussian. The likelihood is

given by

l(xnla)=¢xp[—_%_(x"——xn-. 1a—ccu,,_ 1)2]

If the prior density is gaussian with mean m,—, and variance
U1, then eqn (19) gives

Up—y (xn°"xn—1)+mq-1
m,= S It e T (20)

2 g
un—1+. B
. Uyt . Up—1

Eqns (20) can now be used to up-date the mean and variance
after each observation. It is to be noted that they are non-linear.
In order to compute the control at instant -1, it is necessary to
have a priori distribution of the mean at the next time instant n.
This can be found by substituting ‘for x, as yet unknown, in
eqn (20) from (18) yielding a stochastic equation

: D +aun—1+unf1€n—l ) ‘
m, = n-1 - (21)
ul_y+

-1~
- The performance index with r stages to go (note r indexes
time backwards) is taken as

) f;'(xr’ mr: vr) =min E{ i (ulf +xl%-— l)} (22)
: . k=r ’

Note the » in formulae (18) and (20) will also index backwards
when used in conjunction with (22). The authors regret this
notational inconsistency. .

A discrete time iteration for the performance index may now
be set up by using Bellman’s Principle or Optimality

f;- (xrs m,, v,)=ntl}inE{x,2_1+u,2+f,._1(x,_l, mr—l’vr—l)} .
. g

f1(x1,my,0)=min E {x2+ U2} @)
. Uy :

It is understood that the value of f,—, to be used in this iteration
is the one resulting from the application of «,.

On substituting for-x,, and averaging over both & and the
current density of « followed by minimization with respect
touy; tl_Je analytic expression for #, and f, may readily be found as

My xi(1+v,) |
Vx—m Ji(xy,my,0y)= m“" (24)

The expressidn for f,, indexing n backwards, is now

. A
 Ja(x3,mp,v;)=min E {u§ +(xz +oui+&,)° _B—} +a  (25)
where

“\2
d 2 .
26 (mzv—+om2+u2cfz)
A=2+ + 2

2
2,0 2,0
u2+02 (u2+vz>
2
. ]
a (mzv +au§+u2£2>
B=1+ + 2
uis 2 e :
2 0y ' 2 L]

It is evident that no simple analytic expression can be found
for f,. The complexity of the performance index expression is
seen to be a consequence of the highly non-linear nature of the -
estimation equations; this i$ a commen occurrence in adaptive-
systems. Now it is simple to evaluate f, at any chosen point
(x, m, v) using a digital computer, but this produces f; as a set
of numerical values; to avoid storing all these points f, can be
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condensed into a set of three dimensional orthogonal poly-
nomials. This was done on a small digital computer having
1,024 word working store using a programme developed by
Cadwell and Williams?®.

. Cadwell and Williams’ programme is designed for a particular
small computer. It uses a modification of Forsyth’s method for
generating orthogonal polynomials of successively higher order
using only the previous two polynomials. Owing to machine
‘limitations only 200 data points can be fitted in three variables.
However, in this example, it was found that the mean square
error could be made less than 0-5 per cent when tested over a
large number of points. The polynomials were computed up to
- order 4, involving 35 coefficients of powers of x, m, and v.

Having approximated £, it is possible to compute f5. Since
the error of approximation is small the iteration for f 3 may
be written

Jf3(x3,m3,v3) )
=min E {u3 + x3 +x3 + £, (x5, M3, v;) + d3 (X2, my,v,)}  (26)
Us
where d, (x,, my, v,) is the error in f,, and f3* are the computed
values of f5. Now the minimum in f; will be close to that in f,,

so that _
fy=fs+minE{d;}

Roughly, then, the error is additive at each stage.

To give an idea of the range of the coefficients of the powers
of x, m, v, in f; the largest value was 11-2, then there were nine
in the range 1-10, eight in the range 0-1-1, eleven in the range
0-01-0-1 and only seven below this. Numerical experiments
showéd that omission of some of the smaller coefficients had
a serious effect in certain regions of the variables.

The optimal value of control was found by a gradient
technique, the expression for f being evaluated for a sequence

. of uvalues. A defect of the method is that polynomial approxima-
tions tend to show ripples, especially near the end of the fitted
range, these ripples acted as false minima during the gradient
computations, and it was necessary to check each minimum by
approaching it from two sides. However, even this check was
a little uncertain when the minimum was very flat, in practical
terms this could make great differences to the control and was
important. These effects were greatly reduced by approximating
the results so that the control was smooth function of x, m, v.
Once f; had been found at a suitable set of points a further
polynomial approximation could be found and the whole
process repeated to find f,. The polynomial approxﬁ‘_;l‘:atlon
method required the same computational process at each stage,
which is convenient.

In this example after threé¢ stages the control became a
stationary function of state, some results are shown in Figure 10.

@7

By trial and error a simple approximation for the stationary

control was found to be

—mx

U ==

(28)
7 ?2 +1
for x, m and v in the range 0-5-0.

On the particular computer used (180 y.sec multlphcatxon
. and 4 msec division time) each point involved about 1 min of
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computation and over four stages some 800 points were required,
needing in all some .14 h of computation, it is therefore inter-
esting to see what further method of approximation could be
used so as to reduce this computation load.

Alternative possibility is to replace the system by one which,
on physical grounds, would appear to have a similar control
solution. The simplest alternative system is to regard « as a
random variable with a fixed distribution at each stage, neglect-
ing for the moment ihe transitions in mean and variance. Thus
at each stage the only variable to be considered is x. The mean m,
and the variance v, of the estimate of «, are then successively
up-dated and used in the solution for u (30).

The functional iteration for the stochastic system is a func-
tion of x only

fo (x) =minE {x’_; +u?+f,(x,_ )} (29)
U, .

filx) = m.in E {xg + ”f}
U,

This iteration may be carried, out analytically very. simply.
The stationary solution is

—cmy
T 14v+ev (30)
where ¢ is the positive solution of
l v 1+v
. +— 31

On comparing the resulting values of control from eqn (28)
and (30) it will be found the stochastic control is 10-20 per cent’
smaller than the adaptive control. This is to be expected on
physical grounds, since the adaptive control has exploratory .
element. However, the stochastic control value is a reasonable
approximation to the adaptive one, considering the immense
difference in the amount of computing involved.

At the present time the best approximation method for
adaptive control known to the authors is the replacement of the
fully adaptive system by the partial one as above. Since each
unknown parameter ofteri involves two, or more statistics,.
depending on the distribution used, the reduction in dimen-
sionality can be substantial. It is usually apparent on physical
grounds that the approximation will be a valid one. In many
cases the accuracy of approximation will be better than in the
example above.

A Function Space Approximation for Deterministic Systems

In non-linear deterministic systems a function space approx-
imation can. often be a useful alternative to the trajectory
method. These methods depend on having an analytic form for
the performance index of an approximated system. First it must
be possible to rewrite the dynamic equation of the system in

linearized form as
x=A(x,t)x+B(x,t)u (32)

To obtain an analytic form for the performance index choosé

f(x,t)=min f w(xTQ¥+uTR(u)-df (33)
0 .
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whetedeRmaybegenerﬂtxmedependmtmatrms
: , §6r simplicity, take them to be constants in this
Mﬁpmmmrﬁaldlﬂ’mm equaﬁon for fx ois

, —%‘f=mm[x Qx+u"Ru + p (A(x, t)+B(x, 3] u)] (34)
@mmmimmcmdrmrdmgA andBasconstant it is found
shaf .

| w= —R™B(x, 7 p (35)

p=Ipip,——pJ" with m=%
i

After mbsﬁmtﬁg for the 6ptimal control it will be found -

that eqn (34) cn be solved by substituting f(x,H) =} XTPX
where P is the solution of & matrix Ricatti equation:

P'+ A" (x,0)\P+PA(x, )+ Q=PB(x, ) R'B"(x,) P

Utilizing the stability properties of the Ricatti equation” it can
be shown that P is the positive definite solution of

PA(X, )+ AT (X,H) P+Q=PB(X,) R *B(X, )" P

The approximation scheme now uses eqn (36) to solve a
state dependent matrix. The resulting matrix is substituted into
eqn (35) to compute the control vector. The advantages of this
method are (2) the solution requires only algebraic computation,
and uses currently available quantities; (b) the precise nature
of 4 and Bjs unimportant, thus the method is readily extendable
to_an adaptive scheme, where 4 and B vary as the result of
measurement, and (c) it can be shown that an appropriate
choise of the linearization will always result in a stable con-

; lhty and ease of realization of the resultant con-

moﬂed are probably the most important practical

factors in favour of this technique. To show the stability, con-
sm the general second order system

Xy -‘axz(xz) X2 )
Xp=agy (%) %s +az5 (%, X) X2 +du

the factors ay (x;) and ay (¥, xp) can be siny bounded functions,
but ;,(xy must satisfy certain requirements given below.
Take the performance index

T . . a9 * .
S, :)-min[—IZ—- J (2 +x3+u?) dt] - (38)
. ' t L~
Applying egn (36) the elements p;; of P satisfy ' -
" @piPr2—012P11— (a2 +a,,)p;2=0
d Pu‘zazd’u—lﬂo 39)

a Pzz—zazzl’zz"zuul’xz—l 0

On finding thc stable. solutmn of eqns(39) it is possnble to
mhmetheconﬂol

L —d(py2%; + P22%32)
wkere P and p,, are,the positive solutlons of eqgns (39).
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. (36)

@D

On subst:tutmg for yin the onginal equatms the conmmed
syutem has the form:

xl—axz (x2)x; -
xz = — by (X)X — b3z (%1, X2) %2
where ‘the flmctiombmand b.aretheposmvermts of

3

@)

byi (x)=[a3, (xy)+d P

. bzz(xuxz) [azz(xx,xz)‘*'dz(zau(xz)lhz"'1)]* (41).

The stabmty of eqns.(40).can now be established by applica-
tion of the second method of anpnnav’ Consider the proposed -
meunov fnnctlon

X ' X | . '
. V(x)= WbZI(W)dW'FJ‘ waiz(W)dW - ‘(42)
0
Clearly ‘¥ (x) is a positive function which is bounded lf Qg (x)
is positive and su,wably restncted Its time derivative is

V'=—b,,(x,, xz)~¢12 (x2) xz_ ' (43)

which is negative semi-definite. If the x, axis is not a permissible
trajectory” of the system of eqn (40) then the expression of
eqn (42) is a Liapunov function of the system. This function
defines a series of closed surfaces over the whole phase space
about the origin which the trajectories enter. Thus the system .
is asymtotically stable about the origin. .

- A particular case which has been studles computationally is
the Van der Pol equation

x +a(l— x’)x +bx-du (4
This equation was .lmeanzed in phase space form by putting

Xj=Xy,  @13=1;, ay;=-b, ax;= —a(l—xi) (45
Using the performance index of eqn (38) some comparisons of
the computed trajectories in the exact and approximated cases.
are shown in Figure 11, which gives the phase space trajectories
and the necessary control signals for the exact.and approxxmawd
cases, Figure 12, The closeness of the approxlmatxon ocecurs in
many practical cases, and is an  indication of the effectiveness
of the method. To illustrate the mplementatnon of the scheme
an analogue computer arrangement is shown in Figure 13, which
solves eqn (39). .

. The degree of approximation can be u:nproved ,by varying
the performance index slightly (i.e. Q and R). Figure 4 shows
the effects of such variations and Figure Il siggests that a

system hneanzed and optlmmd with respeet to

f(x’t) J\ ( x1+1 x2+—;—uz)d1:

closely approxxmam the non-lmear system optimized with
respectto :

f(x,8)= —J. (x1+x2+u’)dz.

Thus it appears possible 10 rescale the approxitate phase plane

to ﬁttheopmnalonebyadyustingthcpaf‘
appropnawly )




Conclusions

The general mathematical equations for optimal and adaptive
control can now be set up, but comprehensive methods for
solution are not known. Approximation methods are being
developed, but they must be used according to the individual
circumstances of each problem. A number of different possible
techniques of approximation have been w1th approprlate
examples.

The first point stressed is that the mathematlcal settmg up
of the problem can often be varied so as make the computation

easier, whilst still giving a satisfactory physical solution. The -

second point is that the methods can be grouped:into two
classes, trajectory methods applicable only to' deterministic

. systems, and the function space method which is of wide
application. A systematic search technique for solving trajectory
problems has been described. A function space method using -

orthogonal expansions and another using linearized equatio_ns
has also been given.

Computing was done at the University of London Computer
Unit.

Nomenclature

« Unknown gain factor

A Term in dynamic equation
B Term in dynamic equation
d Control coefficient

Jf(ax, 1) Performance index

h Hamiltonian type function
I(x a) Likelihood function

L Integrand in performance index
v
X P X
(o] x‘
Figure 1.
s}
« Time optimal
4 » +Power constraint
8 e: . 4
.-+ Deviation constraint A
# g
5
op! 857
‘| -
c el - S A 1 I | 1
1 2 3 4 5 6 7 8
Xy—e-
Figure 2.
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m Estimated mean value
n(p) Norm function

P Co-state vector

P Matrix in expansion of performance index
Q Cost of state matrix

R Cost of control matrix
1,7, Time

u Control vector

v Estimated variance
V(x) Liapunov function

x ‘State vector

o Variance

(§,)  Noise process

v _Lagrange multiplier -
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Figure 9. Regulator with unknown gain
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Figure 12. Optimal and sub-optimal control signals .

—_— .3 'i"-(1-x2)x’-x ‘__‘0 -
ur U I
Tdt
pzzxz X2 .
5 M
Xy :
M 4 322
X.
P % - Py ‘ -
Py
axn
i
1 2 3 4 5 . 2 ay 2 ay,
. X—e J
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An Optimal Guidance Approximation for Quasi-circuiar’
Orbital Rendezvous

H.J.KELLEY and J.C. DUNN

Introduction

The second-order guidance approximation scheme employed in
this paper has been developed in an earlier publication’. Essen-
tially, the idea is to select a flight path, optimized in some
appropriate sense, as a nominal trajectory, and then to base
guidance upon a family, or ‘field’, of optimal trajectories
approximated in the vicinity of the nominal. ‘

The investigation, as is shown later, applies this scheme to
the guidance problem for orbital rendezvous. The method is
tractable for a fairly wide class of problems, although in general
it must be carried through numerically. However, in the present
case an analytical treatment becomes feasible because of the
recent availability of a particularly simple optimal transfer
manoeuvre suitable for use as a nominal trajectory. The nominal
manoeuvre, as it appears in this paper, is a direct outgrowth of
a co-planar circular orbit transfer analysis conducted by Hinz2.
The problem posed by Hinz, although phrased somewhat dif-
ferently with regard to coordinate systems and assumptions
employed in deriving the equations of motion, is mathematically

-equivalent to the nominal transfer manoeuvre problem inves-

tigated herein. Both cases yield to an analytical treatment of the
boundary value problem whenever the manoeuvre duration is
an integral multiple of a reference orbit’s period.

The analysis of threc-dimensional rendezvous guidance for
the class of trajectories discussed above leads directly to a
synthesis of a linear feedback control solution with time-
varying gains given in closed form.

Some suggestions are also given for possible modifications
which might enhance system accuracy and the range of opera-
bility during practical implementation of low-thrust rendezvous
guidance.

The Differential Equations of Powered Flight

Considerations begin with the differential equations of three-
dimensional powered flight in a central inverse-square force
field (Figure I):

. k F .
i —rcos? Y0 — rj? +~\§ =, veos fsina
,

'(7+2r79_2tan¢¢9=— veos feos

mrcos i
S . F . (N
Y+2-"+ sin2y 6 =--vsinf
. vF n n
= ——" —— <l
m ok 25/3_2, 0<v<li

where F is the maximum thrust level of the reaction engine; C
is the propellant exhaust velocity; » is a throttle variable; and
m is the instantaneous vehicle mass. The difficulty in obtaining -
any sort of particular solution for these equations needs no
comment here, except that it provides a motive for the simpli-
fications which are now introduced. The object is to devise
certain assumptions which will allow the replacement of eqn (1)
by an approximate set of differential equations which are linear
in the state variables r, 8, and i, and their-time derivatives and,
preferably, separable in the control variables », «, and B.
(Simplifications of this kind afe required to make flight path
optimization and guidance- problems analytically tractable.)
To be specific, it is preferable that these approximate differential
equations describe low-thrust acceleration transfer trajectories
between neighbouring circular orbits.

The following set of dependent and independent variable
transformations will prove useful for our purposes. Let

r(t)=Ro[1+n(1)]

O()y=1()+&(1)

and
m(=my[14&(1)]

where R; is the radius of a circular reference orbit situated in
the ¢ = 0 plane (Figure I); my is some reference mass; and 7
is a fictitious angle defined by the differential expression,

dt
C=wg,

a[ T(0)=0

where vy, is the reference orbit’s period.

Furthermore; since t(f), as defined -above, is a monotonic
time-like parameter, it is permissible to change the independent
variable in eqns (1) from ¢ to 7. This can be accomplished by
simply relating r derivatives to t derivatives as follows:

d drd_d
dr drdr Pog;

> dfd 2l

d? dr\dt) " °dr
Finally, if note is made of the fact that k/R3wZ = 1, then
eqns (1) can be put into the following reduced first-order form:

1

3
W+mvcosﬁsma

u'=(l+n)(1+v)’>cos®y—
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, 2u(l+v)

=—""""“"32w(l t
v T+n +2w(l+v)tany
F*
4+-——-——vcos fcosa
drma+y o’
2uw 1 2 . F*

=2 y )R L —
w T 2( + )" sin tl/+(1+n)(l+€)vsmﬁ
= @)
e'=v
W=w
. F*
f_—E,;V

where F* = F/myRyw? is the reduced maximum thrust accelera-
tion; C* = C/Ryw, is the reduced exhaust velocity; and
the superscribed prime denotes differentiation with respect to
the reduced time, 7.

Now assume that F*, &, u, v, w, 5, and Y are all terms of
order 0 or smaller (6 < < 1). Under these circumstances, one
would therefore anticipate that all terms of order § in eqns (2)
will become negligible with respect to terms of order 8. Thus
the following simplified differential equations are arrived at:

u’=2u+3n+F*vcosﬂsina

v'=—2u+F*vcosfcosa

W = — i+ F*vsin f " 3)
n=u

g'=v

=w

Saying that, to the first order of small quantities, eqns (3)*
are descriptive of quasi-circular flight for the following reason;
then if, as has been assumed, 4, v, 7), etc. are of order §, then it
follows at once that

[ (ESRCIRE

where E and h are specific energy and angular momentum
respectively. Consequently, the emnergy-momentum images of
trajectories which are adequately described by eqns (3) should
everywhere be close to the locus of circular orbits in the E-4
phase plane (Figure 2).

Clearly, the validity of the quasi-circular differential equa-
tions will be compromised when the parameters F*, F*/C*, and
7 exceed certain critical values. Just precisely what these critical

* These equations are identical in form to the differential equa-
tions of Wheelon® and Anthony*. However, the dependent variables
and thrust vector steering angles are not subject to the same inter-
pretation. In particular, the quantity & in eqns (3) is not required to
be small—an important point in the subsequent development.

values are cannot be determined until the nature of the control
schedule »(7), x(7), and £(7), is specified. The reader is adv1sed
to bear this in mind in the sequel.

Optimal Transfer Between Neighbouring Circular Orbits

The optimal orbit transfer problem may be stated as follows:
given two neighbouring circular orbits, find the steering angles
«(7) and B(z) and the throttle schedule »(r) which produce a
transfer between the two orbits in minimum time. For present
purposes, the case for which the terminal or bitsare co-planar
will be selected, a class of optimal transfer paths within the
framework of the quasi-circular dynamics assumption derived,
and later, these paths employed as nominal trajectories for the
three-dimensional rendezvous guidance analysis.

To reiterate, if the subscripts 0 and f denote initial and final
conditions respectively, search is made for a set of control
functions «(7), f(r), and »(7) wl}ich minimize v;, produce a
state transition which evolves in accord with eqns (3), and
which satisfies the circular orbit boundary conditions, viz: at
t=0, u=v=w=n=¢=Y =0, £=0; at T =1y
u=w=2v+ 3y =y =0, n = K(const.). The problem so
stated is a Mayer variational problem with bounded control
variables. The necessary conditions to be satisfied by its solution
are well known and are written here for the present application
without further comment:

Let

x; = state variables, u, v, w, 1, &, ¥/, &

yk = control variables », «, # '

A; = multiplier functions

A; = undetermined constant multipligrs'

P = function to be extremized = tr + A, (uf) + 4,

_(2Uf+3'1f)+/13(Wf)+A4('7f—K)+A5_(‘/’). 4 . '

H = Hamiltonian function = X 4;x;
. i
Then the following equations and inequalities must be satisfied,

H(y)=H(y) ®)

i.e., the optimal control y minimizes the function H.

B0 ©)
xi=5;, [eans()] ™

together with the co: respondmg natural boundary and trans-
versality conditions, :

oP
= _BTf (5a)
_9r
ir_axi (6a)
x;,=0,i=1,...,7
X1, =X3,=2X3 +3x4, =%5,=0,%,, =K (7Va)
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Now, a minimum of H is attained at a minimum of H,,
where H, is that part of H which depends on the control vari-
ables, y. For the problem here,

H1=F"‘v()~l cos Bsina+ A, cos fcosa+ A, sinﬁ—%) ®
Cy _ ‘
However, note that the final mass, m, (1 +£&,) doeés not appear
in the pay-off, i.e., the final mass is left open. However, only
those trajectories for which |&| is of order & are admissible
because of assumptions implicit in eqns (3). Therefore, edns (6)
and (6a) imply that 4, = 0. Consequently, eqn (8) simplifies to:

H,=F*v(, cosBsma+lz cosﬁcosa+23 sinf) (8a)

The requirements on the control vanables «, B, and v are: de-

termined by reasoning as follows.
Since « is unbounded, dH,/0x = 0 and b""hﬁ/bm2 > 0 at the
minimum of H, and hence, ,

sing= — A J(A2 420, cosa=—A, (A2 +2DEF (9
. H, reduces to: .
- H =F*[- (,12+12)* cos B+ As sin ] (10)
" which can be written in the form ’
Y Hy= _F*v(,12+,1 A23)*sin (B— @)
’ o:sinf‘—ﬂl (11)-
' AT +A3+ o

By virtue of the fact that sin @ > 0, it follows that the principal
value of ¢ lies between O and . This last conclusion, together
with eqn (11), permits ‘the deduction that the minimum of H,
occurs when § = @ — n/2*, i.e., when '

__i3‘— osB—Lz___
a2+t @rivny 1P

(i pen |

and H, reduces still further to:

H,= -F"'v (A2+22+2)F

sin f=—

(13)
From eqn (13) 1t follows lmmedlately that v = 1 minimizes H,
whenever
i+ )* #0 (14)
* ‘Notice that H, is also stationary with respect to this value of 8,
ie., OHIIOﬁ (ﬁ) = 0,

[cos £ _ 2sint .0
—2sin% —(3—-4cos?) 0
0 .0 - cos ?
&(t,1)=| sint . 2(1—cost) 0
o —2(1—cost) —=(3%t—4sint) O
~ 10 0 ' sin?
5.0 ‘ Ov ] 0

\
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Furthermore, it can be verified [by solving eqns(6)] that
A2 4+ )2 4+ 22 % O except at a finite number of points on any
T mterval of length 27. Thus the indeterminate values of »
corresponding to A% + 42 + 43 =0 form a set of measure
zero and our problem is therefore well behaved.

In summary, the optimal control variables depend upon the
mutipliers A;, A5, and 45 in the following manner:

sindg= — A cos@= BT

, (;ﬁ + A2 (A2 +43)F

) s (22423

sin ——, oS f=———"7"->— 15
A= A2 +A2+29)*F A= (A2 + 224+ 4%)F (13

y=1

The A’s in turn depend on the unknown Lagrange multipliers,
A; through eqn (6), and the solution of the boundary value
problem turns upon one’s capability to solve for these undeter-
mined constants. However, before attention is directed to the
boundary value problem, it is worth while to emphasize two
points. First, it is easily demonstrated that the optimal control.
variables given by eqns (15) satisfy a strong form of eqn (5), i.e.,

Hl(y)>H(y) y£F (16)

"But eqn (16) together w1th the linear character of eqns (3), are
. sufficient conditions for a strong relative minimum of P. Thus

the assurance is that the control law of eqns (15) will provide a
time-optimal transfer between two co-planar circular orbits
which is unique whenever the boundary value équations possess
a unique solution. Second, it should be noted that the result’
expressed by the last of eqns (15) is independent of the multiplier

‘functions A;, and is therefore insensitive to the boundary con-

ditions. Thus a full throttle operational mode is a characteristic
of the entire extremal field of quasi-circular transfer trajectories
for the problem of minimum time transfer with final mass open.

The Orbital Transfer Boundary Value Problem—a Special Class
of Solutions for Rendezvous '

The _diﬂ'creritial equations, eqns (3), when written in a
symbolic matrix notation, have the following structure: -

X -—Ax+g(y) an

where A is a matrix of constant coefficients and g is a vector
whose elements depend upon the control variables «, B, and ».
Solutions for eqn (17) can thereforé usually be phrased in térms
of a fundamental solution matrix @ (zy, T) and superposition
integrals, e.g.: ‘

i

x(z,)=?>(rf,0)x(0)+fo’«P(rf,r)g[y(r)di )

3sint 0 0 0

—6(l—cos?) O 0 0

0 0 —sint , O]

(4—3cos %) 0 0 0 19) --
—6(2~sinf) 1 0 0 '

0 ' 0 cos £ 0l

0 0 0 1
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g={g|~---,g7}T
where .
i F*
=F*vcosfsina= ———
& . 23+ A
i F*
g, =F*vcos fcosa= — fof
(A4 22+ 42)
- - )LIF*l .
gy=F'vsinf= —— 2 ——— (20)
? (AF+ 23+ 20)F
84=85=86=0
F*v  F*
g7'= C* =_C#

As already pointed out, the Ai's- depend on the undctermmed‘

constants /1; in accord with eqn (6a). Furthermore, it is noted‘
that-in matrix notation, eqns (6) have the form

CA=—ATA 21

and thus are adjoint differential expressions for eqn (17) [i.e.,
eqns (3)]. Consequently, their solution is determmed ~when
D (74, 7) is known, i.e.,

A(r) ()= {:xP } 22)
where Y

—§f~=A,. BP =24, etc.

0x,, - Oxy,

. In.view of these considerations, the co-planar circle-to-circle

! tréhsfe_r boundary conditions [see eqn (7)] are:

(s (Aycos +2A,sint)

up=—F*| . =0 .
! Jo o (42423
: . w[ (24, c08%— Ay sin?)
20;+3’1}=‘_F* 22 0%
0 (Al+lz+l3)
o . . ’
we=—F"| = 430052 dr=0 (23)

v"" l;smf
Jo u.+l§+19*

("*r [, sin i’+2/12 (1 —cos t)]

ne=—F*
oo @B+
where .
_ (AI A : A2 .
A= A, bA4¢osr+<1 —-;‘-)sm%]
(A, A
A= -1 — =2 Jcost -
2= 3/14 A4smr (1 A4>cos*r+l:|
and ~ .
e As Ag : .
_:{.3— Ay Zcosf+A—4sm%] ) (29

A4, =0, and 4&/‘14 =1,

The natural boundary condition on F [see eqn (5)] determines
the magnitude of the scaling constant .1, e.g.,

Hy=——=—1

T

The sign of .1, will depend upon the sign of K.

When eqns (24) and (25) are substituted in egns (23), a set
five boundary value conditions transcendental in five unknowns,
Myfely, dyfity, 13/111, [/ 1 and 7,are obtained. In general, itis

and therefore

|A4!=

(25)

. not posslble to arrive at an analytical solution of the boundary

value problem so stated for arbitrary values of K. However. the
follomng observation is made: if one sets Ay Ay = dyfly =
then eqns (15), (24) dnd (25
indicate that:

Al =1/2 F*

sin@=0, cosd= —sgn(A,)

sinf=0, cosf=1 (26)

which conditions in turn prescribe an in-plane circumferentially
directed thrust vector. Furthermore, it should be noted that
the first four of eqns(23) are identically satisfied by such a
steering programme whenever 7, = 2, and the fifth is satisfied
for this value of final time when K == 4n7 F* sgn (1,). Thus, in
view of the assumptions, and the sufficiency argument connected
with eqn (16), it is concluded that full-throttle in-plane, circum-
ferentially directed thrust is time-optimal. for ascending
(sgn A, = — 1) or decending (sgn.1, = + 1) thrust-limited
transfer between two neighbouring co-planar circular orbits
differing in altitude so that |(R, — Ru)/Ra| = 4nn F*, This
result was first obtained by Hinz? in an analysis only shghtly
different from that presented here.

The relatively simple optimal orbit transfer manoeuvre just
described can be used as a reference rendezvous trajectory for
the guidance analysis, if one imagines that the transfer is

" initiated at the proper time. For example, if, as in Figure 3,

a target at point B in orbit 2 leads the vehicle initially at point A
in orbit 1 by'an angle ey, then it is necessary that erq = 37;,%/8 F*
in order to effect a rendezvous at point C. The nature of the
transfer is such that points B and C are symmetrically deployed
with respect to the initial line 0A4.

The Optimal Rendezvous Guidance Approximation

With a class of time-optimal rendezvous trajectories available
for reference flight paths, the position is now clear to consider
optimal rendezvous guidance. Presumably, the guidance scheme
selected should be preferred to be optimal in the same sense
as the nominal trajectory. Small disturbance assumptions should
also be invoked, thereby obtaining a relatively simple guidance
law. However, because of the stationary character of an optimal
flight path, an immediate conflict of intérest arises. It is found
that, to the first order of small control variations, all guidance
schemes which satisfy the final boundary conditions of the
original “problem are equally attractive, i.e., performance is
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