

Interactive
Dynamic System
Simulation

Granino A. Korn

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland
Bogota Hamburg London Madrid Mexico
Milan Montreal New Delhi Panama

Paris Sao Paulo Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Korn, Granino Arthur, date
Interactive dynamic system simulation.

Bibliography: p.

Includes index. 1. Computer simulation. 2. Dynamics. 3. Micro-
computers. 4. Interactive computer systems. I. Title.
QA76.9.C65K68 1988 001.4'34 88-786
ISBN 0-07-852262-5
ISBN 0-07-852261-7 (book and disk)

ISBN 0-07-852263-3 (disk)

Copyright © 1989 by McGraw-Hill, Inc. All rights reserved. Printed in
the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a
database or retrieval system, without the prior written permission of the
publisher.

1234567890 DOC/DOC 89321098

ISBN 0-07-8522k2-5 {BK}

The editors for this book were Theron Shreve and Ingeborg M.
Stochmal, the designer was Naomi Auerbach, and the production
supervisor was Dianne Walber. It was set in Century Schoolbook by
The William Byrd Press, Inc.

Printed and bound by R. R. Donnelley & Sons Company.

For more information about other McGraw-Hill materials, call 1-800-
2-MCGRAW in the United States. In other countries, call your nearest
McGraw-Hill office.

Information contained in this work has been obtained by
McGraw-Hill, Inc., from sources believed to be reliable. Howev-
er, neither McGraw-Hill nor its authors guarantee the accuracy
or completeness of any information published herein and neither
McGraw-Hill nor its authors shall be responsible for any errors,
omissions, or damages arising out of use of this information.
This work is published with the understanding that McGraw-
Hill and its authors are supplying information but are not at-
tempting to render engineering or other professional services. If
such services are required, the assistance of an appropriate pro-
fessional should be sought.

Preface

This book introduces scientists and engineers to interactive, direct-
executing dynamic-system simulation with ordinary personal com-
puters. We demonstrate an entirely new environment for practical,
interactive experimentation with models of aerospace vehicles, con-
trol systems, chemical processes, and biological systems.

The importance of simulation for design, research, and education
needs little discussion. But it is less generally known that inexpen-
sive personal computers can do very substantial scientific computa-
tion if their software produces good code for the 8087, 80287, or
80387 math coprocessor. This is doubly true for the newer models
with fast clocks or accelerator boards. 10-MHz AT clones readily
solve hundreds of differential equations at one-third VAX 11/780
speed; inexpensive 16-MHz 32-bit PCs outrun the timeshared VAX.

Our emphasis is on interactive computation. Interpreted BASIC is
interactive but far too slow. We really need much faster programs
which still execute directly, that is, without noticeable delay for com-
pilation and linking. This book describes new direct-executing simu-
lation systems for IBM-compatible 16-bit and 32-bit personal com-
puters. These systems are source-code-compatible with similar
software for the DEC VAX and MICROVAX.

The convenience and speed of a direct-executing simulation sys-
tem—which does not interrupt an experimenter’s train of thought
with repeated compilation delays—must be experienced to be be-
lieved. DESIRE (Direct-Executing SImulation in REal time) systems
for simple PC clones solve 100 differential equations on a typed
“run” command, immediately display bright color graphs, and can
perform multirun statistical and optimization studies. DESIRE/287/
387 for AT clones and 32-bit PCs solves 400 differential equations
with a variety of double-precision fixed- and variable-step Runge-
Kutta methods and includes variable-order, variable-step Adams and
Gear (stiff) rules for 50th-order systems.

In addition, the new direct-executing software also performs gener-
al-purpose scientific computation. DESIRE handles complex varia-
bles, vectors, matrices, and fast Fourier transforms, includes a screen
editor, and can use operating-system commands or command proce-
dures as program lines. A modern trace facility simplifies debugging.

Chapter 1 explains the nature of the state-equation models used for
dynamic-system simulation and outlines hardware and software re-
quirements for interactive simulation. This chapter introduces the
program flow of traditional simulation languages as well as EN-
HANCED DESIRE and concludes with our first short program for a
direct-executing simulation.

X Preface

In the remainder of this book we do not merely discuss simulation:
we attempt to demonstrate actual practical simulation procedures,
step by step, with complete, runnable personal-computer programs.
Tutorial versions of DESIRE with color or monochrome graphics,
complete except for a size restriction to five ordinary differential
equations and 900 REAL array or FFT elements, are either included
with the book or may be obtained from the publisher. The diskette
contains the programs for many examples in the book.

Chapter 2 surveys classical applications of dynamic-system simula-
tion in physics, aerospace engineering, physiology, and population
dynamics. Fifteen complete personal-computer programs with dis-
play photos and screen prints serve as illustrations. Interestingly,
the simulation-language programs can be read much like ordinary
mathematics, before language details are discussed.

Chapters 3 and 4 present a tutorial on personal-computer simula-
tion programming. This material has already been used both at the
universities of Arizona and Nebraska and in industrial refresher
courses. Each direct-executing simulation program naturally divides
into a compiled model definition and an interpreted experiment proto-
col. We discuss modeling, displays, and multirun simulation studies,
but also practical screen editing, file manipulation, and hard-copy
output.

Chapter 5 includes much new material on interactive simulation
programming and modeling techniques. Included are new implemen-
tations of submodels and user-defined functions; program combina-
tions; special transfer characteristics and signal generators; recursion
relations for hysteresis, backlash, and track/hold circuits; function
storage in arrays; time delays; and automatic display scaling. The
chapter concludes with an exhibit of several more advanced simula-
tion programs, including blood-circulation simulation and ecosystem
simulation.

Chapter 6 describes nonsimulation applications of the direct-execut-
ing software. The DESIRE interpreter permits complex-number cal-
culations, including conformal mapping on the CRT display; linear
vector transformations and other matrix operations; and calculation of
fast Fourier transforms (FFTs) and convolutions. The compiled pro-
gram segment is especially useful for its automatic graph-plotting
feature and permits fast operations on arrays, solution of difference
equations, and statistical averaging.

Interesting applications include digital signal processing and com-
putation of statistics, such as averages and correlation functions. For
students and teachers, DESIRE provides user-written help screens
and menus. DESIRE’s debugging facilities (trace and dump) and the
automatic notebook file are also discussed.

Preface xi

Chapter 7 completes the volume with a tutorial on control-system
simulation, probably the most important and fruitful application
area. Complete programs illustrate interactive and programmed pa-
rameter-sensitivity studies for a simulated servomechanism and a
simple example of automatic parameter optimization. A fairly so-
phisticated satellite autopilot simulation demonstrates the use of
submodels, nonlinear transfer characteristics, and true time delay.
We continue with special simulation techniques for sampled-data
control systems, simulate an analog plant with a digital controller,
and conclude with a discussion of frequency-response and matrix cal-
culations.

An appendix presents a brief discussion of integration methods,
perturbation techniques, and other mathematical topics. We have
tried to provide useful reference tables and a very comprehensive in-
dex.

Acknowledgments

The writer is grateful to the Society for Computer Simulation for
permitting the use of Figs. 2.5, 7.6, and 7.10 from his articles in
Simulation. Parts of Secs. 5.7 to 5.11 and Fig. 5.15 are based on Ref.
3, Chap. 5. The examples of Figs. 7.5, 7.8, 7.9, and 7.10 are modified
versions of the writer’s examples in Refs. 2 and 4, Chap. 7. IBM PC
and PC/AT are registered trademarks of the IBM Corporation; DEC,
VAX, PDP-11, and VMS are registered trademarks of the Digital
Equipment Corporation.

Granino A. Korn

About the Author

Granino A. Korn has pioneered interactive simulation on minicomputers for
over 20 years. Author or coauthor of nearly a dozen books on computers,
mathematics, and simulation techniques, he currently heads G.A. and T. M.
Korn Industrial Consultants, a firm that develops software and systems for
computer simulation and laboratory automation.

Contents

Preface ix
Chapter 1. Introduction to Dynamic-System Simulation 1
Overview 1
Introduction 2
1.1 Models, Time Histories, and State Equations 2
1.2 Differential-Equation Models 4
1.3 Applications—Practical Choice of State Variables 4
1.4 Models with Defined Variables 7
Computer Simulation of Dynamic Systems 8
1.5 Dynamic-System Simulation 8
1.6 Computer Requirements for Interactive Simulation 8
Simulation Programs and Simulation Languages 9
1.7 Anatomy of a Simulation Program—Model Definition,
Experiment Protocol, and Simulation Runs 9
1.8 The Integration Routine 10
1.9 The Simulation-Run Routine—Time-History Output and Integration 11
1.10 Simulation Subroutine Packages and Simulation Language
Systems 14
1.11 Block-Diagram Languages 14
1.12 CSSL-Committee-Type Languages 15
True Interactive Simulation Means Direct Execution 17
1.13 Software for Interactive Simulation—Separating Model and
Experiment 17
1.14 A Complete Direct-Executing Simulation Program 19
References 20
Chapter 2. Simulation: The Standard Applications 23
Overview 23
Simple Examples from Physics 24
2.1 Damped and Coupled Oscillators 24
2.2 Simulation of a Rigid Pendulum; Phase-Plane Plots for
Nonlinear Oscillators 24
2.3 Van der Pol’s Differential Equation 25
2.4 Nuclear-Reactor Simulation 25
2.5 Delay-Line Circuit Simulation—100 Differential Equations 25
Aerospace and Related Applications 30
2.6 Ballistic Trajectories 30
2.7 Simple Flight Simulation 33

vi Contents

2.8 A Simplified Autopilot
2.9 A Torpedo Trajectory
2.10 Translunar Satellite Orbit
Models from Physiology and Population Dynamics
2.11 Simulation of a Glucose-Tolerance Test
2.12 Simulation of Epidemic Propagation

2.13 Simulation of Ecological Systems—A Predator/Prey Model

References

Chapter 3. DESIRE Programs and Program Files

Overview
We Get Started
3.1 Before You Begin
3.2 Loading and Leaving the System

We Run a Complete Program—Execution of Commands

3.3 An Example
3.4 Command Mode
3.5 Operating-System Commands

We Enter a Simple Program and List It on the Screen
3.6 A Simple Program
3.7 Program Listings
3.8 Auto-Line-Number Mode

Editing ENHANCED DESIRE Programs
3.9 Simple Line Editing

3.10 One-Line Screen Editing

3.11 The ENHANCED DESIRE Screen Editor
Program Loading, Saving, Recovering, and Printing

3.12 ‘“old” and “save” Statements

3.13 The Problem Identification Code (PIC)

3.14 Hard-Copy Listings and Data Transmission
Source Program Manipulation

3.15 Saving ASCII Source Files

3.16 Loading ASCII Source Files

3.17 ‘“‘new” Clears the Memory

3.18 Deleting and Renaming Files

Chapter 4. Programming Interactive Experiments

Overview

Interpreter Programs—The Bare Minimum
4.1 Expressions and Functions
4.2 Output to a Display, Devices, and Files
4.3 Conditional Branching—‘‘if’ Statements
4.4 Labels and Spaghetti Code

Structured Interpreter Programs
4.5 Preview of Improved Interpreter Programs
4.6 “for”, “while”, and “‘repeat” Loops
4.7 Subscripted Variables and Arrays
4.8 Data Lists and “read” Assignments

The Dynamic Program Segment Defines a Simulation Model

4.9 Programming a Simulation Run

4.10 Writing the DYNAMIC Segment—Defined Variables and

State Equations

36

42
44
44
44
46

48

Contents vii

4.11 Sorting Expression Assignments 81
4.12 Library Functions and Table-Lookup/interpolation
Function Generation 81
4.13 Run-Time Displays and Listings 83
4.14 Saving and Recovering Time-History Files 85
4.15 The Run-Termination Operator 86
Interpreter Programs and Commands Define Interactive Experiments 87
4.16 How to Program a New Simulation 87
4.17 Resetting Initial Conditions for Repeated Runs 88
4.18 Interactive Experiments 88
4.19 Programmed Multirun Experiments—Display and Storage Control 89
4.20 Stopping and Continuing a Simulation Run 93
4.21 “Continuing” Runs with Program Changes—
“Mode-Switched” Integration and Bouncing-Ball Simulation 93
Chapter 5. More Advanced Programming Techniques 95
Overview 95
User-Defined Language Extensions 96
5.1 User-Defined Functions 96
5.2 Procedures and Procedure Arguments 97
5.3 Submodel Declaration and Invocation 99
Combining Program Segments and Programs 100
5.4 Combining Program Segments and Library Files 100
5.5 Multiple DYNAMIC Subsegments and Program Chaining 101
5.6 Operating-System Commands and Command Procedures as
Program Lines 103
Special Functions and Transfer Characteristics 103
5.7 Common Nonlinear Library Functions—Limiters 103
5.8 Function Switches and Comparators 106
5.9 Useful Relations between Functions—Maxima and Minima 106
5.10 Recursion Relations, Hysteresis, and Signal Generators 107
5.11 Hysteresis, Difference Equations, and Track/Hold Circuits 108
Function Storage and Time Delays 11
5.12 Function Storage and Recovery 111
5.13 Fixed and Variable Time Delays 114
Automatic Display Scaling 117
5.14 Automatic Rescaling on Display-Scale Overloads 117
5.15 Automatic Scaling Using min/max Functions 118
Some More Advanced Simulation Programs 119
5.16 A Blood-Circulation Model 119
5.17 System Dynamics and World Simulation 124
5.18 Pilot-Ejection Study and Cross Plot 125
5.19 Solution Envelopes for Multiple Runs 127
References 129
Chapter 6. General-Purpose Scientific Computation 131
Overview 131
Compiled Programs Need Not Solve Differential Equations 131
6.1 The Dummy Integration Rule 131
6.2 Semiautomatic Graph Plotting and File Output 133
6.3 Fast Array Manipulation 134

6.4 Recursion and Difference Equations 135

viii Contents

6.5 Use of Euler Integration (irule 2) for Difference Equations
and Accurate Addition—Statistical Averaging

Vector/Matrix Operations and Fast Fourier Transforms
6.6 Linear Vector Transformations and Dot Products
6.7 Matrix Multiplication, Transposition, and Inversion—Solution
of Linear Equations
6.8 Fast Fourier Transforms and Convolutions

COMPLEX Variables and Other Topics
6.9 INTEGER and COMPLEX Numbers and Arrays
6.10 Interpreter Graphics—Conformal Mapping and Frequency-
Response Plots
The Interactive Workstation Environment
6.11 The Automatic Notebook File
6.12 Debugging Facilities—Program Stepping and Tracing
6.13 The Dump Facility
6.14 “time” and “‘size” Statements
6.15 The Help Facility—ASCIlI Screen Displays and Pulldown Menus

Chapter 7. Control-System Simulation

Overview
Interactive Control-System Simulation
7.1 Simulation of a Servomechanism
7.2 Recording the Experiment
7.3 Parameter-Sensitivity Studies
7.4 Making Model Changes
7.5 Performance Measures, Cross Plots, and Automatic
Parameter Optimization
7.6 Special Nonlinear Transfer Characteristics
7.7 Use of Submodels—A Satellite-Attitude-Control Simulation
Simulation of Sampled-Data Control Systems
7.8 Programming Sampled-Data Operations and Quantization
7.9 An Analog Plant with a Digital PID Controller

Linear Systems and Frequency-Response Computations
7.10 State-Equation Models for Linear Time-Invariant Systems
7.11 Frequency-Response Plots—Use of Fast Fourier Transforms
Matrix Techniques
7.12 Matrix Operations in the Interpreter Program
7.13 Matrix Differential Equations

References

Appendix

A.1 Simulation Accuracy and Choice of Integration Rules
A.2 Integration of Discontinuous Functions

A.3 Choice of the Integration Step Size—Stiff Systems
A.4 Perturbation Methods for Improved Accuracy

A.5 Avoiding Division

A.6 Implicit Computation of Inverse Functions

A.7 Reference Tables

References

Index 187

136

138
138

138
140

141
141

144

147
147
149
150
150
150

153

153
154
154
157
158
158

159
161
162
162
162
163
168
168
168
172
172
172
173

175

175
178
179
180
180
181
182

186

Chapter

Introduction to
Dynamic-System Simulation

Overview

Simulation is experimentation with models, typically models set up on
a digital computer. Dynamic-system simulation, in particular, em-
ploys state-variable models described by differential equations or
difference equations. Simulation for research and design, education,
training, and partial system tests accounts for a substantial fraction of
engineering computation. With valid models, simulation is often
dramatically more cost-effective than are real experiments, which can
be expensive, dangerous, or, in fact, impossible because a new system
is not yet available.

Realistic models of aerospace vehicles, chemical or nuclear reactors,
biological systems, or social systems can be complicated, involving
many differential equations and nonlinear functions. Simulation ex-
periments typically require multiple simulation runs, producing time
histories of model variables. Models or model parameters are changed
manually or automatically between runs, frequently as a result of
earlier observations. A good simulation system lets you program
models and experiments interactively, displays and records results
quickly, and then lets you modify model or experiment for another try.
Good system design also attempts to free simulation users from details

1

2 Introduction to Dynamic-System Simulation

of computation and programming, so that they can concentrate on
their experiments.

This chapter introduces the reader to state-variable models of
dynamic systems and to the hardware and software requirements for
effective simulation. We describe the flow of a simulation program,
discuss conventional simulation languages, and introduce the newer
direct-executing simulation environments.

Introduction

1.1 Models, time histories, and
state equations

Scientists and engineers deal with the complexity of the real world in
terms of simplified models. Model relations between model objects
“abstract” useful or interesting properties of corresponding real-world
relations and objects. Well-defined relations between model objects are
by definition mathematical relations, numerical or not. Model objects
and their properties in different states are normally specified by
numerical variables related to real measurements. Experiments can
then check measured states predicted from model relationships, and
the model may be amended as needed. This is the basis of the scientific
method and of rational engineering design.!

Models may, for instance, predict relations between measurement-
related variables such as electric currents and voltages, or gas volumes
and pressures; or between drug dosages and heart rate, or commodity
supply and demand. Model-based predictions have been immensely
useful and are intellectually satisfying. But even successful and
familiar models (such as electrons) are merely simplified and idealized
abstractions, never identical with real-world experiences.

Many model descriptions require time histories of numerical model
variables, say,

x =x(t),y =y, ...

where the independent variable t is the time measured by an
agreed-on clock mechanism. Thus, x(t) might predict the distance
traveled, the current speed, or the fuel remaining for an automobile or
aircraft; the chemical composition of a reactor charge; or the current
price of wheat. The time t could be specified as a continuous variable,
or as a set of discrete observation times t0, t1, t2,

Simple models predict output time histories directly as mathemati-
cal functions of known input time histories, for example,

1.1 Models and State Equations 3

Tire pressure = A #* absolute temperature

Current = voltage/R

Such relations imply instantaneous responses of the output variable to
each input change and, more often than not, agree with experiments
only for very slow changes (static models).

State-transition models (state-variable models) account much
more realistically for the observed behavior of real-world dynamic
systems in that:

1. Effects of input changes on output variables are delayed.

2. The entire output time history depends on the initial values of the
output variables as well as on the input time history.

Given the value x(t) of a state variable x at the time t, a state-
transition model predicts the value of x at some future time t + At by
a state equation,

x(t + At) = S[x(t), t, At] (1.1a)

that is, the future state x(t + At) is a given function of the current state
x(t), of the current time t, and of the time increment At. The time
dependence of the function S includes effects of time-variable system
inputs, if any.

The state equation, Eq. (1a), is a difference equation, relating
current and future values of x(t). If a state-transition model specifies
the function S from empirical or theoretical considerations for even a
small range of time increments At, then the state equation permits
recursive computation of the state variable x(t) for future values of t once
an initial value x(t0) is known,

x(t0 + At) = S[x(t0), t0, At]
x(t0 + 2At) = S[x(t0 + At), t0 + At, At]
x(t0 + 3At) = S[x(t0 + 2At), t0 + 2At, At]

The simple state-transition model is readily generalized to model
states and defined by n state variables x1, x2, ..., xn. We now write n
state equations,

xi(t + At) = Si[x1(t), x2(1), . . . ; t; At] i=12,... (1.1d8)

which can be solved recursively with the aid of n initial conditions.
Quite often one knows the initial values xi(t0) of the n state variables.

4 Introduction to Dynamic-System Simulation

We can also consider the original equation (1a) as a matrix (vector)
equation relating current and future values of an n-element column
matrix, the state vector x = [x1, x2, ..., xn].

Important examples of state-equation models include particle and
rigid-body dynamics, electric-circuit theory, and population dynamics.
Interestingly, economic theory has passed from static to dynamic
models much more recently than physics. In some applications, the
time increment At is a constant, and time histories are specified at
uniformly spaced sampling times t0, t1, t2, . . ., separated by At (time
series). This type of description is used in the social sciences and for
digital control systems.

1.2 Differential-equation models

Many state-transition models, mainly in physics, assume continuous
variables t and x (continuous dynamic systems) and express the state
equations (1) for small changes At of t in the incremental form

x(t + At) = x(t) + Ax(t)
~ x(t) + G[x(t), t] At (1.2)

In the limiting case At — 0, the state equations then become first-
order ordinary differential equations,

dx/dt = G[x(t), t] (1.3a)
or
dxi/dt = Gi[x1(t), x2(t), ... ; t] = W N, (1.3b)

These differential equations must be satisfied by the solution x(t) or
x1(t), x2(t), . . ., xn(t) together with n initial-value conditions.

1.3 Applications—practical choice of
state variables

Dynamic-system models based on differential equations are widely
used in the areas of mechanics, electricity, and chemical reactions.
More recently, such models have served to describe plant growth,
physiological systems, population dynamics, and economic systems.2-7

Quite often a model is already formulated in terms of differential
equations. A differential equation of order n

dt"

dyn dy dyz dyn—l
= y’ _) ¢ i Bl o ; t
dt’ dt’ gt

1.3 Choice of State Variables 5

reduces to n first-order state equations if one introduces y and its first

n — 1 derivatives as the n state variables x1, x2, ..., xn,
dx1 dx2 dx[n — 1]
y=x1,—=%x2, —=x3,..., —————=xn
dt dt dt (1.5)
dxn
— = F(x1, x2, x3, ..., xn; t)
dt

State variables obtained in this way are sometimes called phase
variables. Special approximation techniques are needed if it is impos-
sible to solve Eq. (4) explicitly for the highest derivative of y.

In physics, state variables often describe energy storage, as is the
case for capacitor voltages and inductor currents in electric-circuit
problems. But the best known of many convenient and general
“natural laws” formulated in state-equation form are Newton/La-
grange equations of motion in mechanics.4 Note that, for each type of
mechanical system, the same relatively simple differential equations
hold for a wide variety of initial conditions (Fig. 1.1). Hence Newton’s
“laws” describe a truly huge class of phenomena.

The following simple examples of state-equation models are typical
of those used in computer simulations (see also Chap. 2).

Motion of a falling body. The motion of a body in free fall (no air
resistance) with constant acceleration g = 32.2 ft/s® is described by the
second-order equation of motion

d?y/dt® = —g

We use the altitude y and its derivative ydot (vertical velocity) as state
variables. The state equations are

d/dt y = ydot d/dt ydot = —g

with given initial values y(0) and ydot(0).

This simple problem could be solved analytically without any
computer. But a simulation program makes it far easier to display or
plot the solution time histories. The problem becomes a little more
interesting if we refine the model so that the acceleration of gravity
depends on the altitude y and also add a drag force DRAG dependent
on altitude (air density) and velocity,

d/dt y = ydot d/dt ydot = —g(y) — DRAG(y, ydot)/mass

6 Introduction to Dynamic-System Simulation

vy 4

Figure 1.1 Many different projectile trajectories are derived from the
same state-equation model

d/dt x = xdot d/dt xdot = 0
d/dt y = ydot d/dt ydot = —¢g
with different initial values for x, y, xdot, and ydot. Simple differen-

tial-equation models like Newton’s laws can, thus, deal with a very
wide variety of practical problems.

([}
I

A simulation program can easily accept functions g(y) and DRAG(y,
ydot) as mathematical expressions and/or defined by tables of experi-
mental data; but an analytical solution is now impossible.

Electric-circuit problem. The simple electric circuit of Fig. 1.2 satisfies
two first-order differential equations,

didti= (E - V)L d/dt V =i/C — V/RC

which express Kirchhoff’s laws for currents and voltages together with
the definitions of inductance L, capacitance C, and resistance R. We

1

Figure 1.2 Simple electric circuit.

