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Preface

This book introduces scientists and engineers to interactive, direct-
executing dynamic-system simulation with ordinary personal com-
puters. We demonstrate an entirely new environment for practical,
interactive experimentation with models of aerospace vehicles, con-
trol systems, chemical processes, and biological systems.

The importance of simulation for design, research, and education
needs little discussion. But it is less generally known that inexpen-
sive personal computers can do very substantial scientific computa-
tion if their software produces good code for the 8087, 80287, or
80387 math coprocessor. This is doubly true for the newer models
with fast clocks or accelerator boards. 10-MHz AT clones readily
solve hundreds of differential equations at one-third VAX 11/780
speed; inexpensive 16-MHz 32-bit PCs outrun the timeshared VAX.

Our emphasis is on interactive computation. Interpreted BASIC is
interactive but far too slow. We really need much faster programs
which still execute directly, that is, without noticeable delay for com-
pilation and linking. This book describes new direct-executing simu-
lation systems for IBM-compatible 16-bit and 32-bit personal com-
puters. These systems are source-code-compatible with similar
software for the DEC VAX and MICROVAX.

The convenience and speed of a direct-executing simulation sys-
tem—which does not interrupt an experimenter’s train of thought
with repeated compilation delays—must be experienced to be be-
lieved. DESIRE (Direct-Executing SImulation in REal time) systems
for simple PC clones solve 100 differential equations on a typed
“run” command, immediately display bright color graphs, and can
perform multirun statistical and optimization studies. DESIRE/287/
387 for AT clones and 32-bit PCs solves 400 differential equations
with a variety of double-precision fixed- and variable-step Runge-
Kutta methods and includes variable-order, variable-step Adams and
Gear (stiff) rules for 50th-order systems.

In addition, the new direct-executing software also performs gener-
al-purpose scientific computation. DESIRE handles complex varia-
bles, vectors, matrices, and fast Fourier transforms, includes a screen
editor, and can use operating-system commands or command proce-
dures as program lines. A modern trace facility simplifies debugging.

Chapter 1 explains the nature of the state-equation models used for
dynamic-system simulation and outlines hardware and software re-
quirements for interactive simulation. This chapter introduces the
program flow of traditional simulation languages as well as EN-
HANCED DESIRE and concludes with our first short program for a
direct-executing simulation.
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In the remainder of this book we do not merely discuss simulation:
we attempt to demonstrate actual practical simulation procedures,
step by step, with complete, runnable personal-computer programs.
Tutorial versions of DESIRE with color or monochrome graphics,
complete except for a size restriction to five ordinary differential
equations and 900 REAL array or FFT elements, are either included
with the book or may be obtained from the publisher. The diskette
contains the programs for many examples in the book.

Chapter 2 surveys classical applications of dynamic-system simula-
tion in physics, aerospace engineering, physiology, and population
dynamics. Fifteen complete personal-computer programs with dis-
play photos and screen prints serve as illustrations. Interestingly,
the simulation-language programs can be read much like ordinary
mathematics, before language details are discussed.

Chapters 3 and 4 present a tutorial on personal-computer simula-
tion programming. This material has already been used both at the
universities of Arizona and Nebraska and in industrial refresher
courses. Each direct-executing simulation program naturally divides
into a compiled model definition and an interpreted experiment proto-
col. We discuss modeling, displays, and multirun simulation studies,
but also practical screen editing, file manipulation, and hard-copy
output.

Chapter 5 includes much new material on interactive simulation
programming and modeling techniques. Included are new implemen-
tations of submodels and user-defined functions; program combina-
tions; special transfer characteristics and signal generators; recursion
relations for hysteresis, backlash, and track/hold circuits; function
storage in arrays; time delays; and automatic display scaling. The
chapter concludes with an exhibit of several more advanced simula-
tion programs, including blood-circulation simulation and ecosystem
simulation.

Chapter 6 describes nonsimulation applications of the direct-execut-
ing software. The DESIRE interpreter permits complex-number cal-
culations, including conformal mapping on the CRT display; linear
vector transformations and other matrix operations; and calculation of
fast Fourier transforms (FFTs) and convolutions. The compiled pro-
gram segment is especially useful for its automatic graph-plotting
feature and permits fast operations on arrays, solution of difference
equations, and statistical averaging.

Interesting applications include digital signal processing and com-
putation of statistics, such as averages and correlation functions. For
students and teachers, DESIRE provides user-written help screens
and menus. DESIRE’s debugging facilities (trace and dump) and the
automatic notebook file are also discussed.
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Chapter 7 completes the volume with a tutorial on control-system
simulation, probably the most important and fruitful application
area. Complete programs illustrate interactive and programmed pa-
rameter-sensitivity studies for a simulated servomechanism and a
simple example of automatic parameter optimization. A fairly so-
phisticated satellite autopilot simulation demonstrates the use of
submodels, nonlinear transfer characteristics, and true time delay.
We continue with special simulation techniques for sampled-data
control systems, simulate an analog plant with a digital controller,
and conclude with a discussion of frequency-response and matrix cal-
culations.

An appendix presents a brief discussion of integration methods,
perturbation techniques, and other mathematical topics. We have
tried to provide useful reference tables and a very comprehensive in-
dex.
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Chapter

Introduction to
Dynamic-System Simulation

Overview

Simulation is experimentation with models, typically models set up on
a digital computer. Dynamic-system simulation, in particular, em-
ploys state-variable models described by differential equations or
difference equations. Simulation for research and design, education,
training, and partial system tests accounts for a substantial fraction of
engineering computation. With valid models, simulation is often
dramatically more cost-effective than are real experiments, which can
be expensive, dangerous, or, in fact, impossible because a new system
is not yet available.

Realistic models of aerospace vehicles, chemical or nuclear reactors,
biological systems, or social systems can be complicated, involving
many differential equations and nonlinear functions. Simulation ex-
periments typically require multiple simulation runs, producing time
histories of model variables. Models or model parameters are changed
manually or automatically between runs, frequently as a result of
earlier observations. A good simulation system lets you program
models and experiments interactively, displays and records results
quickly, and then lets you modify model or experiment for another try.
Good system design also attempts to free simulation users from details

1
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of computation and programming, so that they can concentrate on
their experiments.

This chapter introduces the reader to state-variable models of
dynamic systems and to the hardware and software requirements for
effective simulation. We describe the flow of a simulation program,
discuss conventional simulation languages, and introduce the newer
direct-executing simulation environments.

Introduction

1.1  Models, time histories, and
state equations

Scientists and engineers deal with the complexity of the real world in
terms of simplified models. Model relations between model objects
“abstract” useful or interesting properties of corresponding real-world
relations and objects. Well-defined relations between model objects are
by definition mathematical relations, numerical or not. Model objects
and their properties in different states are normally specified by
numerical variables related to real measurements. Experiments can
then check measured states predicted from model relationships, and
the model may be amended as needed. This is the basis of the scientific
method and of rational engineering design.!

Models may, for instance, predict relations between measurement-
related variables such as electric currents and voltages, or gas volumes
and pressures; or between drug dosages and heart rate, or commodity
supply and demand. Model-based predictions have been immensely
useful and are intellectually satisfying. But even successful and
familiar models (such as electrons) are merely simplified and idealized
abstractions, never identical with real-world experiences.

Many model descriptions require time histories of numerical model
variables, say,

x =x(t),y =y, ...

where the independent variable t is the time measured by an
agreed-on clock mechanism. Thus, x(t) might predict the distance
traveled, the current speed, or the fuel remaining for an automobile or
aircraft; the chemical composition of a reactor charge; or the current
price of wheat. The time t could be specified as a continuous variable,
or as a set of discrete observation times t0, t1, t2, .. ..

Simple models predict output time histories directly as mathemati-
cal functions of known input time histories, for example,
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Tire pressure = A #* absolute temperature

Current = voltage/R

Such relations imply instantaneous responses of the output variable to
each input change and, more often than not, agree with experiments
only for very slow changes (static models).

State-transition models (state-variable models) account much
more realistically for the observed behavior of real-world dynamic
systems in that:

1. Effects of input changes on output variables are delayed.

2. The entire output time history depends on the initial values of the
output variables as well as on the input time history.

Given the value x(t) of a state variable x at the time t, a state-
transition model predicts the value of x at some future time t + At by
a state equation,

x(t + At) = S[x(t), t, At] (1.1a)

that is, the future state x(t + At) is a given function of the current state
x(t), of the current time t, and of the time increment At. The time
dependence of the function S includes effects of time-variable system
inputs, if any.

The state equation, Eq. (1a), is a difference equation, relating
current and future values of x(t). If a state-transition model specifies
the function S from empirical or theoretical considerations for even a
small range of time increments At, then the state equation permits
recursive computation of the state variable x(t) for future values of t once
an initial value x(t0) is known,

x(t0 + At) = S[x(t0), t0, At]
x(t0 + 2At) = S[x(t0 + At), t0 + At, At]
x(t0 + 3At) = S[x(t0 + 2At), t0 + 2At, At]

The simple state-transition model is readily generalized to model
states and defined by n state variables x1, x2, ..., xn. We now write n
state equations,

xi(t + At) = Si[x1(t), x2(1), . . . ; t; At] i=12,... (1.1d8)

which can be solved recursively with the aid of n initial conditions.
Quite often one knows the initial values xi(t0) of the n state variables.
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We can also consider the original equation (1a) as a matrix (vector)
equation relating current and future values of an n-element column
matrix, the state vector x = [x1, x2, ..., xn].

Important examples of state-equation models include particle and
rigid-body dynamics, electric-circuit theory, and population dynamics.
Interestingly, economic theory has passed from static to dynamic
models much more recently than physics. In some applications, the
time increment At is a constant, and time histories are specified at
uniformly spaced sampling times t0, t1, t2, . . ., separated by At (time
series). This type of description is used in the social sciences and for
digital control systems.

1.2 Differential-equation models

Many state-transition models, mainly in physics, assume continuous
variables t and x (continuous dynamic systems) and express the state
equations (1) for small changes At of t in the incremental form

x(t + At) = x(t) + Ax(t)
~ x(t) + G[x(t), t] At (1.2)

In the limiting case At — 0, the state equations then become first-
order ordinary differential equations,

dx/dt = G[x(t), t] (1.3a)
or
dxi/dt = Gi[x1(t), x2(t), ... ; t] = W N, (1.3b)

These differential equations must be satisfied by the solution x(t) or
x1(t), x2(t), . . ., xn(t) together with n initial-value conditions.

1.3 Applications—practical choice of
state variables

Dynamic-system models based on differential equations are widely
used in the areas of mechanics, electricity, and chemical reactions.
More recently, such models have served to describe plant growth,
physiological systems, population dynamics, and economic systems.2-7

Quite often a model is already formulated in terms of differential
equations. A differential equation of order n

dt"

dyn dy dyz dyn—l
= y’ _) ¢ i Bl o ; t
dt’ dt’ gt
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reduces to n first-order state equations if one introduces y and its first

n — 1 derivatives as the n state variables x1, x2, ..., xn,
dx1 dx2 dx[n — 1]
y=x1,—=%x2, —=x3,..., —————=xn
dt dt dt (1.5)
dxn
— = F(x1, x2, x3, ..., xn; t)
dt

State variables obtained in this way are sometimes called phase
variables. Special approximation techniques are needed if it is impos-
sible to solve Eq. (4) explicitly for the highest derivative of y.

In physics, state variables often describe energy storage, as is the
case for capacitor voltages and inductor currents in electric-circuit
problems. But the best known of many convenient and general
“natural laws” formulated in state-equation form are Newton/La-
grange equations of motion in mechanics.4 Note that, for each type of
mechanical system, the same relatively simple differential equations
hold for a wide variety of initial conditions (Fig. 1.1). Hence Newton’s
“laws” describe a truly huge class of phenomena.

The following simple examples of state-equation models are typical
of those used in computer simulations (see also Chap. 2).

Motion of a falling body. The motion of a body in free fall (no air
resistance) with constant acceleration g = 32.2 ft/s® is described by the
second-order equation of motion

d?y/dt® = —g

We use the altitude y and its derivative ydot (vertical velocity) as state
variables. The state equations are

d/dt y = ydot d/dt ydot = —g

with given initial values y(0) and ydot(0).

This simple problem could be solved analytically without any
computer. But a simulation program makes it far easier to display or
plot the solution time histories. The problem becomes a little more
interesting if we refine the model so that the acceleration of gravity
depends on the altitude y and also add a drag force DRAG dependent
on altitude (air density) and velocity,

d/dt y = ydot d/dt ydot = —g(y) — DRAG(y, ydot)/mass
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Figure 1.1 Many different projectile trajectories are derived from the
same state-equation model

d/dt x = xdot d/dt xdot = 0
d/dt y = ydot d/dt ydot = —¢g
with different initial values for x, y, xdot, and ydot. Simple differen-

tial-equation models like Newton’s laws can, thus, deal with a very
wide variety of practical problems.

([}
I

A simulation program can easily accept functions g(y) and DRAG(y,
ydot) as mathematical expressions and/or defined by tables of experi-
mental data; but an analytical solution is now impossible.

Electric-circuit problem. The simple electric circuit of Fig. 1.2 satisfies
two first-order differential equations,

didti= (E - V)L d/dt V =i/C — V/RC

which express Kirchhoff’s laws for currents and voltages together with
the definitions of inductance L, capacitance C, and resistance R. We

1

Figure 1.2 Simple electric circuit.




