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Preface

Repetitive processes, also termed multipass processes in the early literature,
are characterized by a series of sweeps, termed passes, through a set of dy-
namics where the duration, or length, of each pass is finite. On each pass an
output, or pass profile, is produced which acts as a forcing function on, and
hence contributes to, the dynamics of the next pass profile. This so-called
unit memory property is a special case of the more general situation where
it is the previous M passes which contribute to the dynamics of the current
one. The positive integer M is termed the memory length and such processes
are simply termed non-unit memory.

The concept of a repetitive process was first introduced in the early 1970’s
as a result of work in The University of Sheffield, UK on the modelling and
control of long-wall coal cutting and metal rolling operations. In these ap-
plications, productive work is undertaken by a series of passes through a set
of dynamics defined over a finite duration, or pass length, which is the first
distinguishing feature of a repetitive process. As the process evolves from
given initial conditions, an output sequence of pass profiles is produced and
it was observed that this could include a first pass profile which had accept-
able dynamics along the pass but subsequent passes contained oscillations
which grew, or increased in amplitude, severely from pass-to-pass.

Further investigation in the long-wall coal cutting case established that
the deterioration in performance after the first pass was due to the effects
of the previous pass profile on the production of the current one. In this
application, the machine which undertakes the cutting operation rests on
the previous pass profile during the production of the current one and its
weight alone clearly means that it will most certainly influence the next pass
profile, i.e. the output dynamics on any pass acts as a forcing function on,
and hence contributes to, the dynamics of the next pass. This is the second
distinguishing feature of a repetitive process, i.e. it is possible to generate
oscillations which increase in amplitude from pass-to-pass. Such behavior is
clearly not acceptable and requires appropriate control action.

Recognizing the unique control problem here, the first approach to the
design of control laws was to write down a simplified mathematical model
and then make use of standard, termed 1D here, control action. The essence
of such an approach is to use a single variable to convert the mathematical
model of the process under consideration into that for an equivalent infinite
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length single pass process in which the relationships between variables are
expressed only in terms of the so-called total distance traversed. This then
led to the design and evaluation of control schemes for this and other examples
such as metal rolling.

The analysis employed in this early work was somewhat application ori-
ented and it was necessary to impose the assumptions that (i) the pass length
is ‘long’ (but finite) and hence the effects of the initial conditions at the start
of each pass can be ignored, and (ii) the effects of the previous pass dynamics
can be represented by a long delay term. Intuitively, however, the resetting
of the initial conditions before the start of each new pass could act as a form
of stabilizing action and hence prevent the growth of disturbances. This and
the need for a generally applicable control theory led to the development of
an alternative approach to stability analysis which does not require the above
assumptions and, in particular, takes full account of the interaction between
successive pass profiles over the finite pass length. This stability theory is
based on an abstract model of the process dynamics in a Banach space set-
ting which includes a wide range of examples with linear dynamics (and a
constant pass length) as special cases.

In this abstract model, the critical contribution from the previous pass
dynamics to those of the current one is expressed in terms of a bounded
linear operator mapping a Banach space into itself and the stability theory
is expressed in terms of spectral and induced norm properties of this op-
erator. Hence, unlike the initial approach, this setting provides a rigorous
general purpose basis for the control related analysis of linear constant pass
length repetitive processes. This is all the more important with the later
emergence of other applications and, in particular, those termed algorith-
mic where adopting a repetitive process setting for analysis either has clear
advantages over alternatives or indeed provides the only viable approach.

The stability theory based on the abstract model setting shows that this
property for these processes is much more involved than first envisaged. In
particular, it shows that the structure of the initial conditions at the start
of each new pass is critical to the dynamics which evolve (both along the
pass and pass-to-pass) and, critically, they cannot be neglected. Hence, at
best, the original approach to the analysis and control of these processes
can only be correct under very special circumstances. Moreover, two distinct
stability properties can be defined and physically justified, where the essential
difference between them is a direct result of the finite pass length.

Given the unique control problem, so-called asymptotic stability demands
that the sequence of pass profiles converge to a steady or so-called limit profile
which, in turn, is equivalent to demanding bounded-input bounded-output
stability (defined in terms of the norm on the underlying function space) over
the finite pass length. This, however, does not guarantee that the resulting
limit profile has acceptable along the pass dynamics. For example, certain
practically relevant sub-classes produce a limit profile which is described by
a 1D (differential or discrete) unstable linear state-space model but over a
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finite duration such a model is guaranteed to produce a bounded response and
hence satisfy the definition of asymptotic stability (for repetitive processes).

Stability along the pass removes this difficulty by demanding the bounded-
input bounded-output property uniformly, i.e. independent of the pass length.
Moreover, asymptotic stability is a necessary condition for stability along the
pass and for certain sub-classes of major interest in terms of applications the
resulting conditions can be tested by direct application of 1D linear systems
tests. Missing, however, is the ability to use these tests, e.g. in the frequency
domain, as a basis for control law design.

If the dynamics along the pass are described by a (matrix) discrete linear
state equation, it can be shown that stability along the pass (for one partic-
ular case of pass initial conditions) of the resulting so-called discrete linear
repetitive process is equivalent to bounded-input bounded-output stability
of 2D discrete linear systems described by well known and extensively stud-
ied state-space models. This, in turn, suggests that the theory for these 2D
systems should be directly applicable to discrete linear repetitive processes.
Note, however, that this equivalence is only present in the case of the sim-
plest possible boundary conditions and there is no corresponding result for
linear repetitive processes whose along the pass dynamics are described by a
(matrix) linear differential equation.

By the mid 1990’s, the stability theory and associated tests for differen-
tial and discrete linear repetitive processes was well developed but there was
much yet to be done before their full power in terms of applications could
be exploited to the maximum extent. This prompted an expanded research
effort into areas of systems theory such as controllability, observability, ro-
bust stability, optimal control, and the structure and design of control laws
(or controllers) with and without uncertainty in the process description. This
monograph gives the results of this work and also its application to, in the
main, iterative learning control which is one of the major algorithmic appli-
cations for repetitive process systems theory.

The following chapter provides the essential background in terms of ex-
amples, their modelling as special cases of the abstract model, the links with
certain classes of 2D discrete linear systems and delay differential systems,
the development of a 1D equivalent model for the dynamics of discrete lin-
ear repetitive processes, and a 2D transfer-function matrix description of the
dynamics of differential and discrete processes. The two currently known al-
gorithmic applications for repetitive processes are also introduced by showing
how their dynamics fit naturally into the repetitive process setting. This is
followed by a chapter giving the abstract model based stability theory and
its application in terms of computable tests and (in some relevant cases) the
extraction of information concerning expected performance in the presence
of stability.

Chapters 4 and 5 give further development of the existing stability theory
and tests in two basic directions for the sub-classes of discrete and differen-
tial linear repetitive processes which have (currently) the most relevance in
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terms of applications. This leads to new interpretations of stability in the
form of so-called 1D and 2D Lyapunov equations which provide computable
information concerning expected performance and also, via Linear Matrix
Inequalities (LMIs) and Lyapunov functions, algorithms for control law de-
sign to ensure stability and performance. Chapter 6 deals with the case when
there is uncertainty in the defining state-space model.

The remaining chapters focus on systems theoretic properties and control
law (or controller) design. In Chap. 7, controllability and observability for
both differential and discrete linear repetitive processes is treated. As in the
theory of 2D/nD discrete linear systems, the situation here is more complex
than for 1D linear systems and it is also important to note that some of the
properties defined for discrete processes have no 2D linear systems counter-
parts. In the differential case, the analysis is much less well developed and
requires further work to be undertaken.

In Chap. 8, a substantial body of results on control law (or controller)
design are developed and illustrative examples given. A major part of these
relate to the development of design algorithms which can be computed us-
ing LMIs and cover the cases when stability and stability plus performance
respectively are required. These control laws are, in general, activated by a
combination of current and previous pass information. Moreover, they have a
well grounded physical basis, a feature which is not always present in 2D /nD
systems. The performance objectives considered include that of forcing the
process under control action to be stable along the pass with a resulting limit
profile which has acceptable properties as a 1D linear system, which again
has a well grounded physical basis.

Linear quadratic optimal control is an obvious approach to the control of
the processes considered here, where a cost function can be formed by taking
the usual quadratic cost along each pass and then summing over the passes
(either for the finite number of passes to be completed or else to infinity).
Here it is shown (by a straightforward extension of familiar 1D theory) that
such a cost function can be minimized by a state control law which cannot
be implemented because it is not causal. It is, however, subsequently shown
that a causal solution to this problem does exist but further work is required
on the computational aspects.

Chapter 9 deals with control law (or controller) design for robustness
and performance. These are the first ever results in this key area and build
on those in the previous chapter in terms of the structure of the laws used
and LMI based computations. The uncertainty structures considered are ex-
pressed in terms of perturbations to the defining process state-space model.
This is followed by an H,, based design and, in the final section, Hy and
mixed Hy/Hs approaches.

Tterative learning control (ILC) is a major application area for repetitive
process theory and this is the subject of Chap. 10. The results given range
from those previously known, which highlight a major performance trade-off
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inherent in ILC, through to the very latest analysis supported by experimen-
tal results from application to a conveyor system and a gantry robot. Finally,
Chap. 11 summarizes the current state of the art and discusses areas for
possible future research, where this latter aspect includes both further devel-
opment of the results reported in this monograph and also extensions to the
structure of the models currently considered to capture essential dynamics
not included in any of those studied to-date.
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1 Examples and Representations

Summary. This chapter first introduces the unique features and control problems
for repetitive processes by reference to two physical examples — long-wall coal cut-
ting and metal rolling. Two so-called algorithmic examples are considered next,
i.e. problem areas where adopting a repetitive process approach to modelling and
analysis has clear advantages over alternatives. All these examples are shown to
be special cases of the general abstract model in a Banach space setting on which
the stability theory for linear repetitive processes is based. Finally, the links at the
modelling/structural level with well known 2D discrete and standard, termed 1D
in this setting, linear systems are detailed.

1.1 Examples and Control Problems
1.1.1 Long-wall Coal Cutting

The unique characteristic of a repetitive process can be illustrated by con-
sidering machining operations where the material or workpiece involved is
processed by a sequence of passes of the processing tool. Assuming the
pass length o < oo to be constant, the output vector, or pass profile,
yr(t), 0 <t < « (where t denotes the independent spatial or temporal vari-
able) generated on pass k acts as a forcing function on, and hence contributes
to, the dynamics of the next pass profile yp41(t), 0 <t < «, k > 0.

These processes have their origins in the mining and metal rolling indus-
tries where the first to be identified was long-wall coal cutting , which was
the most satisfactory, and commonly used, method of mining coal in Great
Britain. Even though coal mining in Great Britain is now a much reduced
industry in comparison to former times, this example can still be used to il-
lustrate the ‘basic mechanics’ of a repetitive process and the essential unique
control problem. This is treated next, starting with a brief description of the
long-wall coal cutting process. We use the notation of the original treatment
of this example in [50, 51].

Figures 1.1 and 1.2 illustrate the basic operation of the long-wall coal
cutting process in which the coal cutting machine is hauled along the entire
length of the coal face riding on the semi-flexible structure of the armored
face conveyor, denoted A.F.C., which transports away the coal cut by the
rotating drum. In the simplest mode of operation, these machines only cut
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in one direction, left to right in Figs. 1.1 and 1.2, and they are hauled back
in reverse at high speed for the start of each new pass of the coal face.

Between passes, the conveyor is ‘snaked’ forward using hydraulic rams, as
illustrated in Fig. 1.3, so that the machine now rests on the newly cut floor,
i.e. the pass profile produced during the previous pass. During the cutting
operation, the machine’s drum may be raised or lowered with respect to
the A.F.C. by using hydraulically operated jacks (illustrated schematically
in Fig. 1.1) to tilt the machine body about a datum line on the drum (also
termed the face) side. The objective of this operation is the vertical steering of
the entire long-wall installation (machine, conveyor and roof support units)
to maintain it within the undulating confines of the coal seam (or layer).
A nucleonic coal sensor, situated some distance behind the cutting drum,
provides the primary control signal by measuring either the floor or ceiling
thickness of coal left by the machine (penetration of the stone/coal interface
is to be avoided on both economic and safety grounds).
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Fig. 1.3. Snaking of conveyor during pushover stage

In order to obtain a simplified mathematical model of this process, con-
sider the idealized side elevation and plan shown in Figs. 1.4 and 1.5 respec-
tively. Here the constants F', R and W represent the feet spacing, drum offset,
and width of the machine (and drum) respectively, the variable Ji1(t) rep-
resents the controlled drum deflection, Yi11(t), exy1(t) denote the coal floor
thickness and the height of the A.F.C. above a fixed datum plane respectively,
X is the transport delay, or lag, by which the coal floor sensor lags behind the
cutting drum, Zy1(t) denotes the height of the stone/coal interface above
the same fixed datum plane as the A.F.C., and fBk11(¢t) denotes the longi-
tudinal tilt of the machine. (The skids labelled A,B,C and D respectively in
these last two figures represent the mountings used to fix the machine body
to the conveyor and are not relevant to the analysis here.) Suppose also that
all angular deflections are small. Then elementary geometrical considerations
immediately yield the following description of the coal cutting process dy-
namics over 0 < ¢t < «, (where a denotes the finite and assumed constant
pass length)

Yii1(t) + Zki1(t) = ex1(t+ R) + Wrgs1(t + R)
+ RBr+1(t) + Jr41(t) (1.1)

where v denotes the transverse tilt of the machine.
The transverse and longitudinal tilts of the machine are also those of the
supporting conveyor structure and are given by

_ (ext1(t) —ex(?))

e () = S (12)

and

/Bk+1(t) _ (6k+1(t) B (;:-l-l(t + F)) (13)

respectively. Suppose also that the A.F.C. moulds itself exactly onto the cut
floor on which it rests — the so-called ‘rubber conveyor’ assumption. Then

ent1(t) = ka(Ye(t) + Zk(t)) (1.4)
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where ko is a positive real constant. This completes the description of the
open-loop system in this case.

One approach to controlling this system is to manipulate the variable
Jr41(t) from a delayed measurement of the coal floor thickness Yip1(t — X).
More commonly, however, the roof coal thickness was used since it can be
related to Y}, ;1 (t—X) on the assumption that the seam thickness is constant.
Suppose also that the sensor and actuator dynamics can be neglected (to a
first approximation) and a so-called fixed drum shearer is used, i.e. R = 0.
Then a possible control law in this case takes the form

Jit1(t) = k1 (Res1(t) = Yer (t — X)) = Wrpqa(t), 0< t < (1.5)
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where k; is a positive real constant and Rjy1(t) is a new external reference
vector taken to represent the desired coal thickness on pass k + 1.

Suppose now, for simplicity, that the variable Zy 1(t) is set equal to zero.
Then combining (1.1)(1.5) yields the following description of the controlled
process dynamics over 0 <t < a, k>0,

Yii (t) = —k1Yk+1(t — X) + kQYk(t) + kle+1(t), X >0 (16)
with assumed pass initial conditions

Yiy1(t) =0, - X <t <0, k>0 (1.7)

Figure 1.6 shows the response of this controlled process in the case when
k1 = 0.8, ko =1, X = 1.25, a = 10 to a downward step change in Rp1(t)
applied at t = 0 on each pass, i.e. Rpy1(t) = —1,0 <t <10, k > 0. Note here
that the oscillations grow, or increase in amplitude, severely from pass-to-
pass (i.e. in the k direction). Consequently the deterioration in performance
after the first pass must be due to the effects of the cut floor profile on the
previous pass. In other words, the output dynamics on any pass acts (by
the basic system geometry) as a forcing function (or disturbance) on, and
hence contributes to, the dynamics of the next pass, i.e. the shape of the
floor profile produced on the next pass of the cutting machine along the coal
face. This interaction between successive pass profile dynamics is a unique
characteristic of all repetitive processes and in cases such as that of Fig. 1.6
appropriate control action is clearly required.

If the example under consideration is single-input single-output (SISO)
and the dynamics are assumed to be linear, an obvious intuitive approach to

/

» t/X

Fig. 1.6. Closed-loop system negative unit step response



