oLYMOUR V. POLLACK

niroducing

3




Introducing
- Pascal

Seymour V. Pollack

Department of Computer S~~~
Washington University
St. Louis, Missouri

Holt, Rinehart and Winston

New York Chicago San Francisco Philadelphia
Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid




Library of Congress Cataloging in Publication Data

Pollack, Seymour V.
Introducing Pascal.

Includes index.
1. PASCAL (Computer program language) [. Title.
QA76.73.P2P64 1983 _001.64'24 83-10756

ISBN D-D03-Dk0OSL3-k

Copyright © 1983 by CBS College Publishing

Address correspondence to:

383 Madison Avenue

New York, New York 10017

All rights reserved

Printed in the United States of America
Published simultaneously in Canada

3 4 5 039 9 8 7 6 5 4 3 2 1

CBS COLLEGE PUBLISHING
Holt, Rinehart & Winston
The Dryden Press

Saunders College Publishing



Preface

Although Pascal made its debut in the midst of hundreds of existing
programming languages, it is revolutionary in that it is the first major
programming language based on a perception of programmming as a sys-
tematic process. While earlier languages include features that offer varying
opportunities for structured programming, the presence or absence of such
features is more a matter of circumstance than design. Most of these lan-
guages were conceived and implemented prior to the emergence and crys-
tallization of structured programming concepts. Subsequent extensions to
these languages have been constrained by the necessity to remain compati-
ble with their original syntactic rules.

Pascal, on the other hand, has no such ancestral restrictions. It reflects
an explicit concern with structured programming. In fact, a major design
objective is to encourage the use of constructions and practices that are
associated with the production of clear, reliable programs. This is doneto a
large extent by incorporating language features that encourage structured
programming and erecting barriers that make it awkward or difficult to
avoid structured programming practices.

Given this orientation, it is useful to view Pascal as the beginning of a
new generation of programming languages. This book reflects that view in
that it accepts structured programming as a rational approach to program
development and it presents Pascal as a reasonable vehicle for supporting
this approach. There is no need at this stage of the discipline to defend
structured programming and argue against the ad hoc approach that pre-
ceded it.

Pascal’s organizational simplicity, when combined with the educa-
tional advantages inherent in Pascal’s design, results in a powerful vehicle
for developing good programming habits and acquiring the necessary prog-
ramming skills relatively painlessly. Thus the student is learning to write
programs in a clear and orderly way while building familiarity with algor-
ithmic processes.

This book is designed for students who have not had previous experi-
ence with Pascal (or any other programming language for that matter). Its

ix



x » Preface

extensive use for example makes it equally suitable for a class or for
self-study. If the student has worked with another programming language
(on any system), it may be appropriate to bypass the first chapter.

There is no intent to present Pascal in its entirety. Although Dr.
Nikalus Wirth, its developer, envisioned a standardized language that
would be supported intact on a wide variety of computing systems, this is
not quite the way events developed. Instead, various organizations, each
seeking to exploit the language in some particular way, have used Wirth’s
standard version as a nucleus which they have embellished with an arbit-
rary assortment of additional features. (Some of these are seen as absolute
necessities that cure basic deficiencies or oversights; others are viewed as
frippery that adds unwanted complications to a language designed to be
simple. Ultimately, each individual must judge the situation with respect
to his or her interests.) Fortunately, these various excursions, despite their
diversity, have been built around the original (standard) version so that its
features form a subset of most (if not all) of Pascal’s dialects.

Thus, rather than trying to accommodate the morass that such uncon-
trolled growth inevitably produces, this bogk uses standard Pascal as a
vehicle for presenting well-illustrated discussions of sound programming
principles and practices. (Some specialized features have been omitted and
an occasional extension, explicitly earmarked as such, has been included
to amplify a particular point. However, the book’s flavor and direction
center around standard Pascal and the principles that it embodies. The
foundation thus provided makes it relatively simple for the programmer to
use any additional features once he or she becomes acquainted with their
operational properties.

Angther feature of the text is worth noting here. Pascal is neither an
“Interactive” language nor a “batch-oriented” language. Since it is in-
tended to be a general-purpose language with particular advantages for
teaching sound programming principles and techniques, it (rightly) avoids
such issues. Instead, the selection of an operating mode is treated concep-
tually as an external process that depends on the requirements and charac-
teristics of the particular application. As far as Pascal is concerned there are
facilities for implementing a program either way. Consequently, this book
pays attention to both types of implementations so that the student is not
nudged toward a prejudice in either direction. Each mode has its uses, and
the student is motivated to learn techniques for both so that he or she can
select the proper one on a rational basis.

I would like to thank Brete Harrison and Paul Becker of CBS College
Publishing and Rachel Hockett of Cobb and Dunlop for their valuable
suggestions and help. Finally, my continued gratitude and love go to
Sydell, Mark, and Sherie Pollack. These are truly wonderful people.

Seymour V. Pollack



Contents

PREFACE

Chapter One INTRODUCTION '

1.1 Solving Problems Systematically
1.2 Computers and Programs :
1.3 Systematic Description of Algorlthms
Problems :
Suggested Readmg

Chapter Two THE PASCAL PROGRAM

2.1 Description of Pascal

2.2 Overall Program Structure

2.3 Fundamental Language Components
Problems

Chapter Three PREPARATION OF PROGRAMS

3.1 Structural Components and Pascal Code
3.2 Program Structure and Appearance
Problems

Chapter Four DATA .

4.1 Data Types and Their Representation
4.2 Programmer-Defined Data
4.3 Organization of Data

Problems

ix

15
21
23

25

25
28
31
45

49

49
60
65

69

69
76
83
91



vi « Contents

Chapter Five ARITHMETIC IN PASCAL

5.1
5.2
5.3
5.4

The Assignment Statement

Basic Arithmetic Operations
Construction of Arithmetic Expressions
Pascal’s Rules for Doing Arithmetic
Problems

Chapter Six EXTENDED ARITHMETIC WITH BUILT-IN
FUNCTIONS

6.1
6.2
6.3
6.4

Chapter Seven

7.1
7.2
7.3

Chapter Eight DECISION AND CONTROL STRUCTURES

8.1
8.2
8.3
8.4

“Equal” Values Are Not Always Equal
Computational Functions

Algebraic Functions

Arithmetic with Programmer-Defined Variables
Problems

INTRODUCTION TO INPUT-OUTPUT
OPERATIONS

READLN and WRITELN Operations
The READ and WRITE Procedures
Format Control of Data Values
Problems

Simple Selection: The IF Statement
Decision Networks with Multiple Tests
Multiple Selection: The CASE Statement
Explicit Transfer of Control

Problems

Chapter Nine CYCLIC PROCESSES

9.1
9.2
9.3

Loops for Counting: The FOR Statement
More General Event-Controlled Loops
Nested Loops

Problems

97

97
99
102
105
111

117

117
118
120
126
127

137

137
145
150
160

169

169
175
177
182
183

193

193
197
201
204



Chapter Ten SUBPROGRAMS

10.1
10.2
10.3
10.4

Structure of Subprograms
Invocation of Subprograms

Nested Construction of Subprograms
Development of Subprograms
Problems

Chapter Eleven BEHAVIOR OF SUBPROGRAMS

11.1
11.2
11.3

Transfer of Information among Subprograms
Recognition of Names in Programs
Recursive Subprograms

Problems

Chapter Twelve ARRAYS

12.1
12.2

Chapter Thirteen

131
13.2
13.3
13.4
13.5

Declaration of Arrays
Array Processing
Problems

NONNUMERIC DATA HANDLING

Processing of Character Data
Packed Character Arrays
Characters and Integers
Processing Boolean Data
Processing of Enumerative Data
Problems

Chapter Fourteen FILES

14.1
14.2
14.3

File Organization
Processing of Textfiles
Datafiles

Problems

Chapter Fifteen SETS

15.1

Declaration of Sets

Contents - vii

207

210
213
218
220
221

231

231
241
246
250

255

255
262
264

271

271
286
289
291
294
295

301
301
302

308
316

319

319



viil - Contents

15.2 Manipulation of Sets 321

15.3 Decision Operations with Sets 323

Problems . 328

Chapter Sixteen DYNAMIC DATA STRUCTURES 333
16.1 Pointers and Pointees 335

16.2 Linked Lists 338

Problems 347

Appendix A RAILROAD DIAGRAMS FOR PASCAL 351
Appendix B ASCIi AND EBCDIC CODING SYSTEMS 360

Appendix C PERMANENT WORDS AND IDENTIFIERS IN
STANDARD PASCAL 363

INDEX 367



ﬁdpiez Ohe

Introdaction

In this book we shall be concerned with the features of the Pascal program-
ming language and the techniques for using them to develop effective
problem solutions on a computer. Unlike the names of most other lan-
guages, Pascal is not an abbreviation for anything. The language is named
in honor of Blaise Pascal (Figure 1.1), a brilliant French mathematician of
the seventeenth century. He is generally credited with building the first
successful mechanical adding machine. Although there is no direct histor-
ical connection, Pascal’s device (Figure 1.2) is considered the starting point
in a long line of arithmetic machines preceding today’s electronic digital
computer.

The Pascal programming language, developed by Dr. Niklaus Wirth,
was introduced in 1971. Although there already were several hundred
programming languages in existence at the time, it would be misleading to
think of Pascal as just another one to add to the list. Pascal’s importance lies
in the fact that it explicitly seeks to support a view of programming as a
systematic, orderly activity. While the earlier major programming lan-
guages do not promote chaos (some people will give you an argument about
that), they represent ideas and attitudes about programming that date back
to the early 1950s. Accordingly, these languages place primary emphasis
on making it convenient to specify certain kinds of computations consi-
dered to be useful. With few exceptions, these languages pay only inciden-
tal attention to the organization of these computations and to the data on
which they are performed.

Over the years, the programming process has been the subject of
extensive study. As aresult, we now appreciate the importance of treating a
program as a manufactured product. While it is not a physical item (we do
not think of a program as something that can be carried around in a bucket),
it shares many attributes with a physical product: It consists of several parts
(called modules), each of which is designed for a particular purpose.
Moreover, these modules must work with each other in certain predefined
ways in order for the overall assembly to function properly and effectively
as a unit. This similarity to a manufactured physical item compels us to



2 - Introducing Pascal

Figure 1.1

Blaise Pascal (Courtesy of Science Museum, London)

recognize the fact that the programming process lends itself to the same
orderly, systematic approach underlying the design and development of
any other product. Structured design and structured programming, both of
which are still evolving, stem from this recognition.

Having said all of that, we can now establish Pascal’s significance: It is
the first major programming language in which program design and orga-
nization are central concerns. Therefore, its primary features are arranged
so that they encourage good structure by making it easy to specify. Pascal
goes even further by imposing requirements that make it awkward or
difficult to avoid good structure. The result is a powerful tool whose
mastery can be of great help in using the computer to solve problems
effectively.



Introduction - 3

Figure 1.2—

Mechanical Calculator (Courtesy of Smithsonian Institution)

1.1 SOLVING PROBLEMS SYSTEMATICALLY

The computer does not know all the answers. Strictly speaking, it does not
“know” anything. Its circuits are designed to move information around in
certain ways so that particular elementary operations can be performed on
that information. However, it is up to us to combine these operations so that
the overall effect is to produce useful results. Thus, when we use a compu-
ter to solve a problem, we are the ones who determine how the problem is to
be solved, and the computer carries out the solution by following our
directions. This relationship between the computer and the human prog-
rammer is an important one: It means that the programmer knows how a
certain problem is going to be solved before he or she calls on the computer
to help out. The method of solution, called an algorithm, is worked out
beforehand and is expressed as a series of steps, each of which brings us
closer to the final result. We bring the computer into the picture by restating
the algorithm as a program. This is the same series of steps, described in the
precise vocabulary of a programming language.

Before we can write a program, it is necessary to develop an algorithm
and describe it so clearly that its conversion to a correct program is relative-
ly uncomplicated. This is when the problem solving takes place, not when



4 - Introducing Pascal

the program is written. Although there is no exact, foolproof recipe for
solving problems, there are orderly steps that help increase the likelihood
of a successful solution. We shall outline these steps briefly in the next few
sections.

1.1.1 Identifying the Problem

It is difficult to imagine the amount of time, money, and effort spent on
developing extensive, ingenious solutions to the wrong problems. Com-
mon sense would indicate that this can be avoided by making sure the
problem is clearly defined before one plunges ahead and starts solving. Yet,
these situations continue to arise. Recently, the people running a hospital
in a certain city observed that their patients were staying one or two days
longer than those admitted to other hospitals for the same types of opera-
tions or treatments. The problem was spotted immediately (or so they
thought): Obviously, the physicians kept the patients too long after surgery.
The hospital launched an extensive and vigorous campaign aimed at en-
couraging the doctors to get their patients up and moving as soon as good
practice allowed. The physicians insisted they were doing thatanyway, but
promised to pay particular attention to this issue. Nothing changed. Final-
ly, the real problem was discovered: A patient could not be discharged
until the bill was ready, and it was taking the accounting department a day
or two longer to prepare the bill than it did at other hospitals.

Because of situations like this, many organizations have made it a rule
to develop and agree upon a precise, written statement of the problem to be
solved before any work is started on a solution.

1.1.2 Finding a Suitable Solution

It is easy to say, “Now that we know exactly what the problem is, the next
step is to find an effective way to solve it.” Sure. Nothing to it. Of course,
there is no step-by-step procedure that leads us from problem to solution.
In fact, we cannot be sure that there is a solution just because we know what
the problem is. Because of these uncertainties, this step is usually the most
difficult one in the entire process. It is the one where much of the creative
effort and ingenuity is concentrated. Entire libraries can be filled with
writings seeking to learn the nature of this process. Several are given as
references at the end of this chapter.

For our purposes, the solution to a problem takes the form of an
algorithm. We can define an algorithm as a sequence of steps or rules that
meets certain requirements:

1. An algorithm must be finite. That is, it must come to a stop sooner or
later. For instance, suppose we were faced with the problem of producinga
particular shade of blue paint. Our proposed solution is as follows:



Introduction - 5

Get a can of base paint and a can of blue coloring.

Open both cans.
Add blue coloring to the base paint until the color is right.

While this procedure seems harmless enough, it might not be finite, For
example, there could be a case where the base color is too blue to begin
with. According to the instructions, this is not the right color. But the
procedure says to keep adding till the color is right. So, in goes more and
more blue, indefinitely. This is not as ridiculous as it sounds. Remember
that computers cannot exercise judgment. It is up to us to provide a specific
mechanism that will guarantee a stopping point regardless of the condi-
tions under which the algorithm operates. For this little procedure, we
might specify the following revision:

Get a can each of base color, white, and blue color.
Open the three paint cans.
IF the base color is too blue,
THEN
Add white paint, a little at a time, until the color is right.
ELSE
Add blue paint, a little at a time, until the color is right.

We may be able to think of other situations for which this procedure will
not be finite, but we shall not belabor the issue. The basic point is that there
must be a way to bring our procedure to a successful conclusion.

2. Analgorithm should be precise. This means that each of the steps must
be described in such a way that it can be performed by whoever (or
whatever) will be carrying out the process. In our little example, which
lacks precision, we would have to specify the amount of blue or white paint
to add (how much is “a little?”), and we would have to describe how to
determine when the right color is produced. For a skilled colorist, this
might be as simple as saying, “When the mixture matches this color sam-
ple, you have the right color.” For someone who is less sensitive to color,
the directions might be quite different: “When the mixture gives a reading
between 407.5 and 423.3 on the Schmugelsky Coloramic Pigmentovacut-
ron, you have the right color.” When the algorithm is to be transformed into
a computer program, the requirement for precision means that each step
must be expressed in such a way that it can be carried out on a computer.
3. Analgorithm should be general. This means that the procedure should
not be so limited that it solves only one specific problem for one specific
case. Instead, it should be capable of producing satisfactory solutions for a
variety of cases. For example, our little color mixing procedure does what
we need it to do as long as we want that particular shade of blue. We could
generalize it by expanding its capabilities to include other shades of blue,
or even other shades of other colors.



6 - Introducing Pascal

There are many instances where we can come up with several different
solutions for a problem. For instance, suppose we are driving along and
suddenly the ride becomes much bumpier without any noticeable change
in the road. Moreover, steering becomes more difficult. After stopping the
car and inspecting it, we find that one of the tires is flat. Before discussing
possible solutions, we must agree on what the problem is. In this instance
there is little difficulty on that score: Our journey has been interrupted, and
we wish to resume it as soon as we can. When we state the problem that
way, we can think of numerous potential solutions. Here are just a few:

Abandon the car and continue on foot.

Buy another car and continue in that one.

Reinflate the tire and continue the trip.

Get in touch with a service station and have one of their mechanics

replace the tire.

Flag down a passing motorist and persuade that party to transport us to

our destination.

6. Flag down a passing motorist and persuade that party to replace the
tire.

7. Call home and get a loved one to come out and replace the tire.

8. Replace the tire ourselves and continue on our way.

PWON=

o

Sometimes we can narrow down the choices by rejecting some as being
clearly unsuitable. In our example, solutions 2 and 3 are in that category.
We probably would not need much convincing to reject solutions 5 and 6 as
well. After that, the choice of the most “appropriate” solution may become
more complicated because what is “appropriate” will depend on the cir-
cumstances. For example, solution 1 may be best after all if we are close to
our destination and we must get there promptly. Thus, in many situations,
selection of an effective solution method can be the most challenging part
of an information-processing project.

1.1.3 Decomposition of a Problem

Once we identify a problem, it is often impossible to solve the entire
problem all at once. More likely than not, the problem is too complicated
for us to be able to keep track of all the possible twists and angles at the
same time. When this happens, it is useful to break up the problem into a
collection of interrelated subproblems. Each of these is small enough so
that we can handle it comfortably, as a complete entity. This process of
decomposition makes it easier to develop a solution for each little problem.
As a result we can produce a complete, precise definition of what each
piece is supposed to do and how it fits with the connecting pieces. The
stage is set, then, for each of these components to be developed separately.



Introduction - 7

To illustrate, let us return to our disabled automobile. Suppose we
decided that the best solution under the circumstances was to replace the
flat tire with the spare tire. When we look at the solution more closely, we
can identify several steps, each of which embodies a little problem of its
own;

Remove the spare wheel/tire and the necessary tools from the trunk.
Remove the wheel on which the flat tire is mounted.
Install the wheel on which the spare tire is mounted.
Place the wheel removed in step 2 in the trunk, along with the tools.

o

The activities required to carry out a given step become increasingly clear
as we focus even more closely. For example, let us consider step 2 in more
detail. The actual removal of the wheel cannot occur without some prepa-
ration.

2. Remove the wheel on which the flat tire is mounted:
2.1 Remove the hubcap and retaining nuts from the wounded wheel.
2.2 Find an appropriate place for positioning the jack.
2.3 Set up the jack.
2.4 Raise the wheel by means of the jack until the wheel no longer
touches the ground.
2.5 Remove the wheel.

If necessary, decomposition continues by dissecting each of these subprob-
lems in turn, until each activity has been reduced to a series of simple steps
that are completely understood.

The same process applies to a problem solution invelving a computer.
Eventually, the result will be a program, but we know nothing about that
program’s details at this point. Rather, the decomposition process tells us
how that program divides into pieces and what each of these pieces needs
to do.

1.1.4 Identification of Component Details

At this stage of the game, we do not yet know exactly how each piece
identified during the decomposition will do its job. In fact, we may not
know whether each of these little problems has a solution or not. The whole
point of the decomposition process is to make it easier to deal with these
issues one at a time. Once the pieces are known, we can focus in on each
one to determine its characteristics in detail. As a result, each piece will be
completely defined: We shall know what it does, what it needs to do its job,
and precisely how that job is done.

The idea behind this step can be illustrated with a simple example:



8 « Introducing Pascat

Suppose our problem is to produce a device for playing phonograph re-
cords. As a result of the decomposition step, we identify the need for a
number of components, one of which is a turntable on which the record is
to spin. (Studies during the solution-finding stage have convinced us that it
will be better to have a spinning record and a passive tone arm than touse a
design in which the record stands still and the needle races around the
grooves.] We know upon entering this stage that the turntable must be able
to hold records of a certain size, and that it must be driven at a certain
speed. Now, during this stage, we can deal with such questions as the
turntable’s thickness, the material out of which it is to be manufactured, the
distribution of its weight throughout its surface area, and other such con-
cerns. By the time this stage is completed, we shall have developed enough
information about the turntable to enable it to be built. The same will be
true for the other parts. In the case of a computerized problem solution,
then, this stage produces complete specifications for each part of what
eventually will be a computer program. These parts are called program
modules or, simply, modules, and we shall use the term in that context.
Note that we haven’t written any programs yet. That comes in the next step.

1.1.5 Coding

It is at this point that we are ready to express our solution as a sequence of
program statements so that a computer can be used to carry it out. If we did
a reasonable job during the previous stages, this part of the process will be
like a translation from one “language” to anather. Although in this book we
shall be translating to Pascal, it is important to point out that the descrip-
tion of each module should contain enough detail so that it can be restated
in any one of a variety of programming languages. As a matter of fact, when
the modules’ details are being worked out, the particular programming
language to be used does not enter the picture and should not influence that
work.

The process of writing such program modules is called coding. It is
important to understand that we are not developing a solution method at
this stage. That has been done already in previous stages. We know what we
want to do, and we know how we want to do it. We also know what we want
to tell the computer. When we write the code, we convert the description of
our intentions from a form that the computer cannot use to a form with
which it can work.

Pascal itself is organized to make the coding process particularly
convenient, especially when it is driven by an orderly set of specifications.
We shall take full advantage of this convenience by emphasizing the
preparation of clear, unambiguous descriptions for program modules. The
pertinent discussion begins in Section 1.3.



