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“Universal algebra has been looked on with
some suspicion by many mathematicians as
being comparatively useless as an_engine of
investigation.”

Alfred North Whitehead
[Whitehead 1897, preface]

“General classifications of abstract systems
are usually characterized by a wealth of ter-
minology and illustration, and a scarcity of
consequential deduction.”

Garrett Birkhoff
| Birkhoff 1935, page 438]

“Since Hilbert and Dedekind, we have known
very well that large parts of mathematics can
develop logically and fruitfully from a small
number of well-chosen axioms. That is to say,
given the bases of a theory in an axiomatic
form, we can develop the whole theory in a
more comprehensible way than we could other-
wise. This is what gave the general idea of the
notion of mathematical structure. Let us say
immediately that this notion has since been
superseded by that of category and functor,
which includes it under a more general and
convenient form.”

Jean Dieudonné
[Dieudonné 1979, page 138]



Preface

In the past decade, category theory has widened its scope and now inter-
acts with many areas of mathematics. This book develops some of the
interactions between universal algebra and category theory as well as some
of the resulting applications.

We begin with an exposition of equationally defineable classes from the
point of view of “‘algebraic theories,”” but without the use of category theory.
This serves to motivate the general treatment of algebraic theories in a
category, which is the central concern of the book. (No category theory is
presumed ; rather, an independent treatment is provided by the second chap-
ter.) Applications abound throughout the text and exercises and in the final
chapter in which we pursue problems originating in topological dynamics
and in automata theory.

This book is a natural outgrowth of the ideas of a small group of mathe-
maticians, many of whom were in residence at the Forschungsinstitut fir
Mathematik of the Eidgendssische Technische Hochschule in Ziirich,
Switzerland during the academic vear 1966-67. It was in this stimulating
atmosphere that the author wrote his doctoral dissertation. The *Ziirich
School,” then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred
Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate,
Sammy Eilenberg, John Isbell, and Saunders Mac Lanc (whose spiritual
presence was tangible.)

I am grateful to the National Science Foundation who provided support,
under grants GJ 35759 and DCR 72-03733 A01, while I wrote this book.

I wish to thank many of my colleagues, particularly Michael Arbib,
Michael Barr, Jack Duskin, Hartmut Ehrig, Walter Felscher, John Isbell,
Fred Linton, Saunders Mac Lane, Robert Paré, Michael Pfender, Walter
Tholen, Donovan Van Osdcl, and Oswald Wyler, whose criticisms and
suggestions made it possible to improve many portions of this book; and
Saunders Mac Lane, who provided encouragement on many occasions.
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Introduction

“Groups,” “rings,” and “lattices” are definable in the language of finitary
operations and equations. “Compact Hausdorff spaces” are also equationally
definable except that the requisite operations (of ultrafilter convergence) are
quite infinitary. On the other hand, systems of structured sets such as “topo-
logical spaces™ cannot be presented using only operations and equations.
While “topological groups™ is not equational when viewed as a system of sets
with structure, when viewed as a system of “topological spaces with structure”
the additional structure is equational; here we must say equational “over
topological spaces.”

The program of this book is to define for a “base category” J# —a system
of mathematical discourse consisting of objects whose structure we “take
for granted”—categories of J#-objects with “additional structure,” to classify
where the additional structure is “algebraic over X°,” to prove general
theorems about such algebraic situations, and to present examples and appli-
cations of the resulting theory in diverse areas of mathematics.

Consider the finitary equationally definable notion of a “semigroup,” a
set X equipped with a binary operation x - y which is associative:

(x-y)z=x-(y 2
For any set A, the two “derived operations” or terms
ay - [ay - ((as “ag) " (as - as))], (ay - az) - [a3 - (a5 (as - ag))]

(with ay, ..., ag in A) are “equivalent” in the sense that one can be derived
from the other with (two) applications of associativity. The quotient set of
all equivalence classes of terms with “variables” in A may be identified with
the set of all parenthesis-free strings a, - - - a, with n > 0; call this set AT.
A function f: B —— CT extends to the function

BT & &7

bl"'bn_—’/jb."'ﬂb

whose syntactic interpretation is performing “substitution” of terms with
variables in C for variables of terms in BT. Thus, for each A, B, C, there is
the composition

(A=t BT, B=Ls CT) coor ff <2 €T = A5 BT L ET

There is also the map .
A-2LS AT, ar—a

which expresses “variables are terms.” T = (T, 5, °) is the “algebraic theory”
corresponding to “semigroups.”
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In general, an algebraic theory (of sets) is any construction T = (T, 7, °)
of the above form such that ° is associative, 5 is a two-sided unit for - and

A4LB 2 BBt =a BT

A T-algebra is then a pair (X, &) where ¢£: X T —— X satisfies two axioms,
and a T-homomorphism f:(X, &) (Y,0) is a function f: X —— Y
which “preserves” the algebra structure; see section 1.4 for the details.

If T is the algebraic theory for semigroups then “semigroups” and “T-
algebras” are isomorphic categories of sets with structure in the sense that
for each set X the passage from semigroup structures (X, *) to T-algebra
structures (X, &) defined by

(xl...x")c=xlo.4.oxn

is bijective in such a way that f:(X, ) (Y, *) is a semigroup homo-
morphism if and only if it is a T-homomorphism between the corresponding
T-algebras.

The situation “over sets,” then, is as follows. Every finitary equational
class induces its algebraic theory T via a terms modulo equations construc-
tion generalizing that for semigroups, and the T-algebras recover the original
class. The “finitary” theories—those which are induced by a finitary equa-
tional class—are easily identified abstractly. More generally, any algebraic
theory of sets corresponds to a (possibly infinitary) equationally-definable
class. While the passage from finitary to infinitary increases the syntactic
complexity of terms, there is no increase in complexity [rom the “algebraic
theories” point of view. It is also true that many algebraic theories arise as
natural set-theoretic constructions before it is clear what their algebras should
be. Also, algebraic theories are interesting algebraic objects in their own
right and are subject to other interpretations than the one we have used to
motivate them (see section 4.3).

An examination of the definition of the algebraic theory T and itz algebras
and their homomorphisms reveals that only superficial aspects of the theory
of sets and functions beiween them are required. Precisely what is needed is
that “sets and functions” forms a category (as defined in the section on pre-
liminaries). Generalization to the “base category” is immediate.

The relationship between the four chapters of the book is depicted below:

Chapter 1 Chapter 2
Algebraic theories of sets Trade secrets of category theory

Chapter 3
Algebraic theories in a category

Chapter 4
Some applications and interactions
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The first chapter is a selfcontained exposition (without the use of category
theory) of the relationships between algebraic theories of sets and universal
algebra, finitary and infinitary. The professional universal algebraist wishing
to learn about algebraic theories will find this chapter very easy reading.

The second chapter may be read independently of the rest of the book,
although some of the examples there relate to Chapter 1. We present enough
category theory for our needs and at least as much as every pure mathema-
tician should know! The section on “objects with structure” uses a less
“puristic” approach than is currently fashionable in category theory; we hope
that the reader will thereby be more able to generalize from previous knowl-
edge of mathematical structures.

The third chapter, which develops the topics of central concern, draws
heavily from the first two. The choice of applications in the fourth chapter
has followed the author’s personal tastes.

Why is the material of the third chapter useful? Well, tc suggest an
analogy, it is dramatic to announce that a concrete structure of interest (such
as a plane cubic curve) is a group in a natural way. After all, many naturally-
arising binary operations do not satisfy the group axioms; and, moreover,
a lot is known about groups. In a similar vein, it is useful to to know that a
category of objects with structure is algebraic because this is a2 special prop-
erty with nice consequences and about which much is known.

Many exercises are provided, sometimes with extended hints. We have
avoided the noisome practice of framing crucial lemmas used in the text as
“starred” exercises of earlier sections. For lack of space we have, however,
developed many important topics entirely in the exercises.

Reference a.b.c refers to item c¢ of section b in Chapter a. Depending on
context, d.e refers to section e of Chapter d or to item e of section d of the
current chapter.



Preliminaries

The reader is expected to have some background in set-theoretic pure
mathematics. We assume familiarity with the concept of function f: X — Y
between scts and a minimum of experience with algebra and topology, e.g.
the definitions of “topological space,” “continuous mapping of topological
spaces,” “group,” and “homomorphism of groups.”

A variety of notations are employed for the evaluation of a function f
on its argument x. Usually we write xf instead of fx or f(x) (although d(x, y),
for the distance between two points in a metric space, is chosen over (x, y)d).
Another notation for xf is {x, f). This notation is especially convenient
when x or f is a long expression. We also employ the “passage arrow”
and write x —— xf which is read “x is sent to xf”. This notation is useful
when defining functions.

The composition of functions

xLvy 4Lz

will be written fg or f.g. Thus x(fg) = x(f.9) = (xf)g. For any set X, the
identity function of X is the function idy: X X defined by x(idy) = x.
It is clear that for any f: X ——— Y we have idy.f = f = f.idy. This may
be expressed by the commutative diagram. We say the diagram commutes
id
X . > X

idy
because all composition paths between the same sets in the diagram are

the same function. Similarly, the familiar associative law of composition,
(fg)h = f(gh), is expressed with a commutative diagram. Because of the

! > X
gh
J9 f
¥ h

w
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associative law, fgh: W ——— Z is well defined; and it is this principle that
allows commutative diagrams to display eﬂ'ectwely the result of composing
long chains of functions.

The theory of categories, functors between categories, and natural trans-
formations between functors—to the extent that it is needed—is developed
gradually beginning with Chapter 2. Since certain functors and natural trans-
formations arise naturally in Chapter 1, these concepts are defined here. A
category A is defined by the following data and axioms.

Datum . There is given a class Obj(X") of A -objects.

Datum 2. For each ordered pair (A, B) of X -objects there is given a class
A (A, B) of A -morphisms from A to B. If fe # (A, B), A is the domain of f
and B is the codomain of [ (see Axiom 3).

Datum 3. For each A -object A there is given a distinguished A -mor-
phism id ;€ A (A, A) called the identity of A.

Datum 4. For each ordered triple (A, B, C) of A -objects there is given
a composition law

H(A, B) x #(B,C)

Axiom 1. Composition is associative, that is given fe (A, B),ge 4 (B, C)
and h e A (C, D) then (fg)h = f(gh) e A (A, D).

Axiom 2. Iffe H(A, B) then (id,)f = [ = f(idp).

Axiom3. If(A, B) # (A, B') then X (A, B) n (4, B) = &.

“Sets and functions” form a category which we will denote henceforth by
Set. Thus a Set-object is an arbitrary set and Set(A, B) is the set of functions
from A to B. Identities and composition are defined in the way already dis-
cussed. Axiom 3 asserts that for the purposes of category theory, a function
is not properly defined unless the set it maps from and the set it maps to
are included in the definition. Thus the polynomial x? thought of as mapping
all the real numbers into itself is a different function from x? thought of as
mapping all the nonzero real numbers into the set of all real numbers.

The reader should recognize at once that “topological spaces and con-
tinuous mappings” as well as “groups and group homomorphisms™ are two
further examples of categories.

If & is an arbitrary category we will write f: 4 —— B to denote fe
H'(A, B). We will also use f.g as an alternate notation to fg. Axioms 1, 2
can be expressed as commutative diagrams just as we did earlier for the
category Set. Let " and ¥ be two categories. A functor, H, from A" to ¥
is defined by the following data and axioms:

H(A, C)

Datum 1. For each X -object A, there is given an £ -object AH.

Datum 2. For each A -morphism of form f: A —— B there is given an
ZL-morphism of form fH:AH BH.
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Axiom 1. H preserves identities; that is, for every X -object A, (id ))H =
id 4g.

Axiom2. H preserves composition, that is, given f:A —— B and
4:B—>Cin X' ,(fgH = fHgH:AH CHin &.

We use the notation H: " ——— ¢ if H is a functor from 4 to Z.

Suppose now that H, H': ' ——— .% are two functors between the
same two categories. A natural transformation o from H to H' is defined by
the following datum and axiom:

Datum. For each X -object A there is given an ¥ -morphism Au: AH ——
AH'.

Axiom. For each X -morphism f: A——— B the following square of £-
morphisms is commutative:

fH

AH >BH
A Bo
AH" > BH'’
fH'

ie., Ao.fH = fH.Ba.
We use the notation a: H ——— H' when « is a natural transformation
from H to H'.



Chapter 1
Algebraic Theories of Sets

This chapter is a selfcontained introduction to algebraic theories of sets.
Category theory is not used in the development. The motivating example of
equationally-definable classes is eventually seen to be coextensive with alge-
braic theories with rank. Compact Hausdorff spaces and complete atomic
Boolean algebras arise as algebras over theories (without rank) whereas com-
plate Boolean algebras do not.

1. Finitary Universal Algebra

In this section we define (finitary) equationally-definable classes. Further
systematic study of finitary universal algebra is raferred to the literature (see
the notes at the end of this section) but some of the standard examples are
developed in the exercises.

There are a number of ways to define the concept of a group. Here are
three of them:

1.1 Definition. A group is a set X equipped with a binary operation
m:X x X —— X (multiplication), a unary operation i: X — X (inversion)
and a distinguished element e € X (the unit) subject to the equations

xymzm = xyzmm (m is associative)
Xem = X = exm (e is a two-sided unit for m)
xixm = e = xxim (xi is the multiplicative inverse of x)

forall x,y,zin X.

(Notice the use, in 1.1, of parenthesis-free “Polish notation,” e.g. xymzm
instead of ((x, y)m, z)m. A formal proof that this notation works is given below
in 1.11.)

1.2 Definition. A group is a set X equipped with a binary operation
d:X x X —— X (division) subject to the single incredibie equation

xxxdydzdxxdxdzddd =y

forall x, y, zin X. 1t is proved in [Higman & Neumann, ’52] that a bijective
passage from 1.1 to 1.2 is obtained by xyd = xyim. The structure of
“xxxdydzdxxdxdzddd” is examined in 1.13 below.

1.3 Definition. A group is a set X equipped with a binary operation m
such that m is associative and admits unit and inverses, i.e., such that there exists
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a unary operation i and a distinguished element e of X subject to the equations
of 1.1.

Very roughly speaking, group theory is an algebraic theory and 1.1, 1.2,
1.3 are presentations of that theory. (Actually, the empty set is a group ac-
cording to 1.2 but not according to 1.1 and 1.3; to remedy this one should
modify 1.2 by requiring a distinguished element e satisfying xed = x.) The
first two are equational presentations in that they take the form of a set of
operations subject to a set of equations, whereas the third is not an equational
presentation because existentiz! quantification is not equationally express-
ible. We devote this section t~ sctting down, in precise terms, the definition
of a finitary equational presentation (€2, E) and the resulting equationally-
definable class (or variety) of all (Q, E)-algebras.

1.4 Definition. An operator domain is a disjoint sequence of sets, Q =
(Q,:n =0,1,2...). Q, is the set of n-ary operator labels of Q.

We remark, as an aside, that an operator domain may be viewed as a
directed graph whose nodes are natural numbers and whose edges terminate
at 1. Thus a directed graph suitable for “groups™ as in 1.1 is

Ot —(3)

This point of view is a natural precursor to viewing an operator domain as
a category, an approach which receives only brief treatment in this book (see
1.5.35, the notes to section 3, Exercises 2.1.25-27 and Exercise 3.2.7).

An Q-algebra is a pair (X, 8) where X is a set and & assigns to each w in
Q, an n-ary operation 6. X" X. Given Q-algebras (X, 8) and (Y, y)
an Q-homomorphism from (X, ) to (Y, y) is a function f:X —— Y whick
commutes with the Q-operations, that is, for all w € Q, and n-tuples (x4, . . ., X,)
of X, we have (xy, ..., x)0,f = (x f, ..., x,f)y,. Denoting the passage of
(Xgs vy X)) 1O (X1 f .-y X, /) bY f": X" ——— Y™ this may bz equivalently
written as the commutative square:

X = — "
3 |7 (1.5)
X >Y




1. Finitary Universal Algebra 9

1.6 Example. Define Q, = {e}, Q, = li}, Q, = {m]. Q, = ¢ for all
n > 2. Then every group (as in 1.1) is an Q-algebra, but not conversely. The
Q-homomorphisms between groups are ordinary group homomorphisms.

An equational presentation, as is yet to be defined, should consist of a
pair (Q, E) where Q is an operator domain and E is a set of Q-equations. To
properly formulate “Q-equation™ we must formalize the construction of ex-
pressions such as xxmzm and xxim.

1.7 Definition. Let A be a set. A word in A is an n-tuple of elements of A
with n an integer >0; n is the length of the word. We will write aa; - - - a,
instead of (a,, . . ., a,) to convey the feeling of “word in the alphabet A.” An
expression such as a,a,m is a word in the appropriate “alphabet” A. In
general, let 2 be an operator domain, set |Q| to be the union of all 2,, and
define an Q-word in A to be a word in the disjoint union A4 + |Q]; (the dis-
" joint union of the sets X, Y is the set X + Y = (X x {0}) u (Y x {1})).
Notationally, we will use separate symbols for elements of A and elements of
|| and write Q-words as words in 4 U |Q]. If Q is as in 1.6, abmem. eam, and
eiare all Q-words in 4; unfortunately, so are nonsense words such as mmamib.
An Q-term in A is an Q-word in A which can be derived by finitely many
applications of 1.8 and 1.9 below:

(1.8) aisanQ-termin A for all ae A.

(1.9 If weQ, and py,...,p, are Q-terms in A, then p, - p,w is an
Q-term in A.

The set of all Q-terms in A will be denoted AQ.

Intuitively, an Q-word in A is a term if and only if it has the appearance
of a well-defined function in finitely-many variables of A. For example, if
Qis as in 1.6 and if 4 has at least three distinct elements a, b, ¢ then the
doubleton {abmcm, abcmm} is the essence of the associative law; for if
(X, 8) is any Q-algebra and if (x,, x,, x3) is any 3-tuple of elements of X then
by virtue of the substitution “x, for a, x, for b, x5 for ¢”, abmem induces the
ternary operation ((x,, x,)d,, x3)d,, on X and abcmm similarly induces a
ternary operation on X ; (X, o) satisfies the associative law if and only if these
ternary operations are the same. This motivates

1.10 Definition. Fix any convenient (effectively enumerated, see, e.g.,
[Hermes '65, page 11]) set V of abstract variables, V. = {vy, vy, ..., U,... }.
For example, V might be the set of positive integers. An Q-equation is a double-
ton {ey, e,} of Q-terms in V. An equational presentation is a pair (Q, E) where
Q is an operator domain and E is a set of Q-equations.

The equational presentation corresponding to 1.1 is Q asin 1.6 and E =
{ {vy;mosm, vyv03mm}, {viem, v,}, {evym, v}, {viv;m, e}, {v,v,im, e}}.
This overly formal notation is difficult to read and in most situations we
use the more colloquial “e; = e,,” use parenthetical notation instead of
Polish notation, and write x, y, z ... for v, v,, v3.... Thus, E as above is
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written:

((x, y)m, zym = (x, (y, z)m)
(x,e)m = x = (e, x)m
(xi, x)m = e = (x, ki)m
We now set forth to formalize the means which allowed us to make actual
operations out of terms in the style that we accomplished this for abmem in
the preceding paragraph. ’

1.11 Uncoupling Lemma. Let A be aset and let Q be an operator domair.
Then for each p e AQ of word length greater than 1 there exists a uniquc
integer n greater than 0 and unique w € Q, and n-tuple (py,....p,) € AL"
such that p = p, - - - p,o.

Proof. Since p is constructed from (1.8) and (1.9) and has more than ore
symbol, it is clear that there exists a representation p = p, - - p,w s in tre
statement and that n and @ are unique. We must prove thatifp = g, -
is another such representation, then p; = g; for all i. It is helpful to deiine
the integer-valued valency map, val ([Cohn ’65, p. 118]), on the set o all
Q-words in 4 by val(@) = 1 — m (for all @ € Q,,), val(a) = 1 (for all a e A),
val(b, - - - b,) = val(b,) + - -+ + val(b,,). Since an Q-formula g can be con-
structed from (1.8) and (1.9), val(q) = 1 and val(s) > O for any left segment
s of q (where, if ¢ = by - b,,. the left segments of ¢ are the m Q-words
b, - - b, for 1 < k < m). The crucial observation is:

(1.12) If sis a proper left segment of p; - - - p, and if se AQ, then s is a
left segment of p;. (For otherwise, there exists i < k < n and a left segment
tof py 4, suchthats = p; - - - pit:it follows that 1 = val(s) = val(p; - - - pit) =
k —i+ 1+ val(t) and i — k = val(t) = 0 (i.e., if t is empty then k > i), the
desired contradiction).

Applying 1.12 to s = gq,, we sec that g, is a left segment of p,. Symmet-
rically p, is a left segment of ¢, so p, = ¢,. Therefore,p, - p,w =g, ¢,
and we can apply 1.12 to prove p, = q,. Similarly, p; = g3....,pp = q». [

The uncoupling process of 1.11 can be geometrically depicted by the “tree”

P10 Pa®

w

Py Pn

Each p; has shorter length than the original term. Each p; of length greater
than 1 can be similarly decoupled until we obtain the complete derivation
tree of the term in which all terminal branches are terms of length 1, that is
variables or 0-ary operations.
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1.13 Example. The derivation tree of xxxdydzdxxdxdzddd as in 1.2 is

xxxdydzdxxdxdzddd
d \
x / xxdydzdxxdxdzdd
xxdydzd xxdxdzd
xxdyd xxdxd
xxd xxd

/d\ /d\
X X X X
Since the derivation of Q-terms is unique we have:

1.14 Principle of Finitary Algebraic General Recursion. Let Q be an
operator domain and let A be a set. To define a function y on AQ it suffices to
specify

(1.15) ay forallae A.

(1.16) (py - - - pyw)y in terms of pyy and w. []

1.17 Example (Substitution of Variables in Terms). Let f:4—— B be
a function (substituting variables in B for variables in 4). By algebraic general
recursion we may define the function fQ: AQ ——— BQ by

{a,fQ2) = of
<(pl o in),f9> = <p19fQ> o <p,,,fg>(l)
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Thus, {aaadbdcdaadadcddd, Q) = xxxdydzdxxdxdzddd if af = x, bf = 3,
¢f = z In the picture of 1.13, we plug in the appropriate terminal branches
x. y. z and chase up the tree.

1.18 Example (The Total Description Map). Let(X, 4)be an Q-algebra.
The rotal description map 8 : X Q2 ————— X is defined by algebraic general
recursion:

x0“ = x
(P pa)d” = (p10°, ..., pud")d,

Il

Clearly, the total description map accomplishes what we wanted: it makes
operations out of formulas, although we should note the role of 1.17 in inter-
preting variables as arguments. We are finally ready for:

1.19 Definition. Let Q be an operator domain, and let (X, ) be an Q-
algebra. For each \istuple r:\V —— X there is an interpretation map r* defined
byr®:VQ -————— X = rQ.5". Notice that r* can be defined directly by alge-
braic general recursion: vr” = vr, (p; - pyo)r” = (pyr”, - pr®),. If
{e,, e;} is an Q-equation, say that (X, 0) satisfies {e,, e,} if e,r* = e,r” for
all r:vV—— X. If (@, E) is an equational presentation, an (Q, E)-algebru is
an Q-algebra which satisfies E, that is satisfies every equation in E. The class
of all (R, E)-algebras is said to be an equationally-definable class of algebras.
or a variety of algebras. For example, the equationally-definable class de-
fined by the presentation in 1.10 is “groups™ asin 1.1.

The above construction of interpretation maps is based on an important
principle. Notice, first, that 1.9 defines an Q-algebra structure on AQ (and
we will always regard AQ as an algebra in this way). We can now state

1.20 Principle of Finitary Algebraic Simple Recursion. Let Q be anoper-
ator domain, let (X, 6) be an Q-algebra and let /: 4 —— X be a function.
Then there exists a unique Q-homomorphism f”:4Q ——— (X, ) ex-
tending f.

Proof. By 1.14 there exists unique function f* such that af * = af and
Py p)f* = (pif "o Paf" )00 [

To help explain the terminology of 1.20, recall that a sequence x:N ——
X (where N = {0,1,2,3...}) is defined by simple recursion if there exists
an endomorphism §: X —— X such that x,,; = x,0. The general recursion
of 1.14 amounts to “mathematical induction” (see the notes at the end of this
section). Observe that if X = {qa, b} and if x is defined by x; = x; = a,x, =
b for n > 1, then x is not definable by simple recursion. This situation is an
instance of 1.20 and 1.14, corresponding to the operator domain
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