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Piecewise monotone mappings on an interval provide simple examples of discrete
dynamical systems whose behaviour can be very complicated. These notes are concerned
with some of the properties of such mappings. It is hoped that the material
presented can be understood by anyone who has had a basic course in
(one-dimensional) real analysis. This account is self-contained, but it can be
regarded as a sequel to Iterates of maps on an interval (Springer Lecture Notes in

Mathematics, Vol. 999).

I would 1like to thank Lai-Sang Young, Richard Hohmann-Damaschke and Jirgen Willms
for their suggestions and comments during the writing of these notes. My thanks go
also to the staff of the FSP Mathematisierung at the University of Bielefeld for

technical assistance in the preparation of the text.

Bielefeld Chris Preston
May 1987



ITERATES OF PIECEWISE MONOTONE MAPPINGS ON AN INTERVAL - CONTENTS

Section 1  Introduction w.ieeisissiosineimismsnasmasiosamenssnsinsamsnsss 1
Section 2 Piecewise monotone mappings .......ceiiiiiiiiiiiiiiiii i 20
Section 3 Proof of Theorems 2.4 and 2.5 ..... ... i, 34
Section 4  Sinks and homtervals ...... ... oot 41
Section 5 Examples of register-shifts ...... . .ot 50
Section 6 A proof of Parry’s theorem (Theorem 2.6) ..............coon.. 57
Section 7 Reductions ...t 68
Section 8 The structure of the set D(f) .....cooiiniiiiiiiiiiiiiiinn. 82
Section 9 Countable closed invariant sets .......... ... ... . it 103
Section 10 EXTensions ...t e 112
Section 11 Refinements siceimisciiisesiniiaiivis@isssnii@riesnsisei s 126
Section 12 Mappings with one turning point ....... ... . .. i, 135
Section 13 Some miscellaneous results from real analysis ............... 153
References .......... et e e e e e e e e 160
M) e e 163



1. INTRODUCTION

Llet I = [a,b] be a closed, bounded interval and let C(I) denote the set of
continuous functions f : I = I which map the interval I back into itself. For
f e C(I) we define ¢ C(I) inductively by fo(x) =X , fl(x) = f(x) and (for
n>1) fx) = f(f"1(x)) . " is called the n th. iterate of f . The set of

iterates (fn) of a mapping f € C(I) provides us with a very simple example of

n>0
a dynamical system. This system can be thought of as describing some process, whose
states are represented by the points of the interval 1 , and which is observed at
discrete time intervals (say once a year or every ten minutes); the process evolves
in such a way that, if at some observation time the process is in the state x ,
then at the next observation time the process will be in the state f(x) . Hence if
the process is originally in the state x (at time 0 ) then it will be in the
state fn(x) at time n . The sequence {fn(x)}n>0 is called the orbit of x

(under f ), and it describes the successive states of the process, given that x

was the starting state.

Dynamical systems of this type have been used as models in the biological
sciences (see, for example, May (1976), May and Oster (1976) and Guckenheimer, Oster
and Ipaktchi (1977)), as well as in the physical sciences (see, for example, Lorenz
(1963), Collet and Eckmann (1980) and Gumowski and Mira (1980)). They are also
ideally suited for making numerical "experiments" using a computer (see, for

example, Feigenbaum (1978) and (1979)).

In these notes we study the iterates of a special class of mappings in C(I) ,
namely the iterates of piecewise monotone mappings. A mapping f € C(I) 1is called
piecewise monotone if there exists N> 0 and a = dg < dl < - K dN < dN+1 =b
such that f is strictly monotone on [dk’dk+l] for each k =0,..., N . The set
of piecewise monotone mappings in C(I) will be denoted by M(I) . If f e M(I)
then w e (a,b) 1is called a turning point of f if f 1is not monotone in any
neighbourhood of w . M(I) includes all of the mappings in C(I) whose iterates
have been used as models of "real" processes;\jn fact, most such models use mappings
having one turning point, for example the elements in the family Py € M([0,1]) ,

0 <p <4, where pu(x) = px(1-x) .



We will analyse the iterates (fn}n>0 for a general mapping f € M(I) . The
analysis is carried out in two stages. In Sections 2 to 6 we will be concerned with
following question for an element f from M(I) : What does the asymptotic

behaviour of the orbit {f"(x)) look like for a "typical" point x € I ? Here

n>0
"typical" is meant in a topological (rather than in a measure-theoretical) sense: we
want to make statements about the asymptotic behaviour of {fn(x)}n>0 which hold
for all points x 1lying in a "large" subset of I , where a "large" subset is one
which contains a dense open subset of I , or at least is a residual subset of I .
(A residual subset is one which contains a countable intersection of dense open
subsets of I .) The main result of the first stage of the analysis is Theorem 2.4;
this is a generalization of Theorem 5.2 in Preston (1983) , which dealt with the
case of mappings having only one turning point and which was based on results of
Guckenheimer (1979) and Misiurewicz (1981). Theorem 2.4 says roughly that if

f € M(I) then one of three things happens to the orbit (f”(x))n>o of a "typical”

point x eI :

(1.1) The orbit eventually ends up in an f-invariant subset C c I , C consisting
of finitely many closed intervals, on which f acts topologically transitively

(which means that the orbit of some point in C 1is dense in C ).

(1.2) The orbit is attracted to an f-invariant Cantor-like set R c I , on which f

acts minimally (which means that the orbit of each point in R 1is dense in R ).

(1.3) The orbit is contained in an f-invariant open set Z c I , which is such that

on each of its connected components f" is monotone for each n > 0 .
(A subset A c I is called f-invariant if f(A) c A .)

The second stage of the analysis is carried out in Sections 7 to 12. This can
be seen as a study of the structure of the set of points x € I for which none of
(1.1), (1.2) and (1.3) hold. By Theorem 2.4 this set is "small"; however, it turns
out that the global complexity of the iterates of f can be strongly influenced by

the behaviour of f on this set.
\‘

The aim of these notes is to analyse the topological structure of the iterates
of a mapping f € M(I) . This means that we are only interested in results which are

invariant under topological equivalence. To make this more precise we need a



definition: Mappings f, g € M(I) are said to be conjugate if there exists a
homeomorphism % : I - I (i.e. ¥ 1is a continuous and strictly monotone mapping of
I onto itself) such that yof = goy . The results which we present are all
invariant under conjugacy; i.e. if f, g € M(I) are conjugate then any statement
which occurs in a theorem is either satisfied by both of f and g or it is

satisfied by neither of them.

The topological structure of the iterates of a mapping f € M(I) s also
analysed in Milnor and Thurston (1977) and in Nitecki (1982). The present notes have
1ittle in common with the first of these papers, except for Section 6, the main part
of which is only a slight modification of material in Milnor and Thurston. Nitecki
not only considers mappings from M(I) , but also the iterates of a general mapping
from C(I) . Section 4 of Nitecki’s paper deals with a "spectral decomposition"
theorem for the non-wandering set of a mapping f € M(I) , a result which is due to
Hofbauer (1981) (and for mappings with only one turning point to Jonker and Rand
(1981) and van Strien (1981)). The second stage of our analysis is lTikewise
concerned with a kind of "spectral decomposition” (though not for the non-wandering
set), and in a certain sense our approach parallels that taken by Nitecki. We
strongly recommend the reader to study Nitecki’s paper, and, if it can be got hold
of, that of Milnor and Thurston. The book by Collet and Eckmann (Collet and Eckmann
(1980)), which mainly treats mappings having a single turning point, is also highly

recommended.

Some of the results in these notes can be extended to mappings which are
allowed discontinuities at their turning points, (i.e. to the set of mappings
f:1-1 for which there exists N> 0 and a = dO < d1 < e < dN < dN+1 =b
such that f is strictly monotone and continuous on each of the open intervals
(dk’dk+1) , k=0,..., N ). Results of this type corresponding to the first stage
of the analysis given here can be found in Willms (1987). Furthermore, Hofbauer’s
"spectral decomposition" theorem (Hofbauer (1981), (1986)) remains valid in this

extended set-up.

As we have already mentioned, we hope thit the material in these notes can
understood by anyone who has had a basic course in real analysis. The most important

prerequisite is a familiarity with the standard topological properties of the real



line (as are covered, for example, in the first five chapters of Rudin (1964)).
There are, however, a couple of results which we need to use, and which probably do
not occur in a typical introductory real analysis course (for example, the Baire

category theorem). These results are stated and proved in Section 13.

Throughout these notes 1 denotes the closed bounded interval [a,b] , on
which most of the mappings are defined; the symbols a and b are only ever used
for the end-points of this interval. We consider I as our basic topological space;
hence "open" always means with respect to the topology on I , and so, for example,
[a,c) s an open subset of I for each c e (a,b] . If Ac I then A denotes
the closure of A and 1int(A) the interior of A (again with respect to the
topology on I ). If Jc I is an interval then |[J| will denote the length of
J . (We also use |A| to denote the cardinality of the set A ; however, this

should not create any problems.)

We now give an outline of what is contained in the various sections of these

notes.

Section 2: Piecewise monotone mappings This section introduces the basic
definitions and facts about piecewise monotone mappings. For f e M(I) Tet T(f)

denote the set of turning points of f and let

I(f) = { x € (a,b) : there exists ¢ > 0 such that s

monotone on (x-g£,x+¢) for all n >0 } ;

then Z(f) 1is open, and in fact Z(f) is the largest open set G c (a,b) such
that fn(G) NnT(f) =@ for all n > 0 . Moreover, it is not hard to see that Z(f)

is f-invariant. ( Z(f) 1is the set which occurs in (1.3).)

Llet m>1; we call a closed set C c I an f-cycle with period m if C is

the disjoint union of non-trivial closed intervals BO,..., B such that

m-1
f(Bk_l) C Bk for k=1,..., m-1 and f(Bm_l) c By (in particular we then have
f(C) cC ). We call C proper if f(Bk_l) = Bk for k=1,..., m-1 and

f(Bm_l) = B0 . An f-cycle C 1is said to be topglogica11y transitive if whenever F
is a closed subset of C with f(F) c F then either F ='C or int(F) = @ . There

are several other definitions of "topologically transitive" which are equivalent to



the one we have used, and some of these are given in Proposition 2.8; for example,
an f-cycle C is topologically transitive if and only if the orbit of x is dense
in C for some x € C . (The subset C which occurs in (1.1) is a topologically

transitive f-cycle.)

having period m, s it

Let (Cn}nzl be a decreasing sequence of f-cycles, Cn

is then easy to see that mn|m for each n > 1 . We call the sequence (Cn}n>1

n+l
splitting if Miel > M, for each n > 1 . We say that Rc I is an
f-register-shift if there exists a splitting sequence of proper f-cycles (Kn}n>1

with Kl NnZ(f) =@ such that R= n K_ , and we then call (K } 1 @ generator
n»] M n’'n>

for R . If R s an f-register-shift then Propositions 2.2 and 2.10 show that
int(R) = @ and that f maps R homeomorphically back onto itself; moreover, the
orbit of x 1is dense in R for each x € R . (The subset R which occurs in (1.2)

is an f-register-shift.)
If C 1is an f-cycle then Tet
A(C,f) = ( x eI : f'(x) € int(C) for some n >0} .

If R 1is an f-register-shift and (Kn)nzl , (Ké)nzl are two generators for R

then it follows from Proposition 2.2 that n A(Kn,f) =N A(Ké,f) ; we can thus
n>1 n>1

define A(R,f) = n A(Kn,f) . (In Proposition 2.9 we will see that
n>1

AR, f) = { x el : limmin |[f'(x)-z| =0 ) .)
n-o zeR

Now let C , C’ be topologically transitive f-cycles and R , R’ be
f-register-shifts. Proposition 2.2 will show that either C =C’ or
A(C,f) n A(C',f) = g, and that either R =R’ or A(R,f) n A(R',f) =2 ; also
A(C,f) , A(R,f) and Z(f) are all disjoint. Furthermore, each of A(C,f) and

A(R,f) contains a turning point of f . Therefore if Cl""’ Cr are the
topologically transitive f-cycles and Rl""’ RE are the f-register-shifts, then
€+r < |T(f)| and the sets A(Cl,f),..., A(Cr,f), A(Rl,f),..., A(Rg,f) and Z(f)

are disjoint. The first main result of Sectiog 2 is Theorem 2.4, which says that
A(f) = A(Cl,f) U - U A(Cr,f) U A(Rl,f) Uy A(Re,f) U Z(f)

is a dense subset of I , (and thus A(f) is residual, since it can clearly be



written as a countable intersection of open subsets of I ). Theorem 2.4 is the
precise formulation of the statement that for the orbit of a "typical" point in I

one of (1.1), (1.2) and (1.3) holds.

The second main result of Section 2 (Theorem 2.5) gives us more information
about the topologically transitive f-cycles. We say that f e M(I) is
(topologically) exact if for each non-trivial interval J c I there exists n >0
such that f"(J) =1 . We call f e M(I) semi-exact if there exists c € (a,b)
such that f([a,c]) = [c,b] , f([c,b]) = [a,c] , and the restriction of fz to
[a,c] s exact. Let f e M(I) and C be a proper f-cycle with period m ; let B
be one of the m components of C . We say that C is exact (resp. semi-exact) if
the restriction of f™ to B is exact (resp. semi-exact). (It is easy to see that
these definitions do not depend on which of the components of C is used.) If C
is either exact or semi-exact then C 1is clearly topologically transitive. Theorem
2.5 states that the converse of this is true, namely that each topologically

transitive f-cycle is either exact or semi-exact.

Let f € M(I) be topologically transitive, (by which we mean that the whole
interval I s a topologically transitive f-cycle). Then Theorem 2.5 gives us that
f is either exact or semi-exact. An important property of such mappings is provided
by a result of Parry (Corollary 3 in Parry (1966)). This implies that if f e M(I)
is either exact or semi-exact then f is conjugate to a uniformly piecewise Tinear
mapping g € M(I) , where a mapping g € M(I) is said to be uniformly piecewise
linear with slope B > 0 if, on each of the intervals where it is monotone, g is
linear with slope either B or -8B . Thus if f € M(I) 1is topologically transitive
then f s conjugate to a uniformly piecewise linear mapping. We give a proof of

this result in Section 6.
Section 3: Theorems 2.4 and 2.5 are proved in this section.

Section 4: Sinks and homtervals Here we analyse the set Z(f) . For f e M(I) Tlet
Z,(f) = { xel: f'(x) e Z(f) for some n>0}) ;

then Z,(f) s open, Z(f) c Z,(f) and f(Z.(f)) c Z*(f)'. In fact there is not

much difference between Z(f) and Z,(f) , since in Proposition 4.1 we show that



each point in Z,(f)-Z(f) 1is an isolated point of I-Z(f) , and so in particular
Z,(f)-Z(f) 1is countable. Z,(f) can be described in terms of sinks and homtervals.
A non-empty open interval J c (a,b) 1is called a sink of f if there exists m > 1
such that f™ is monotone on J and fm(J) cdJd . (If J is a sink of f then it
follows that f" is monotone on J for all n > 0 .) A non-empty open interval

J c (a,b) is called a homterval of f if for each n > 0 we have f1 s monotone

on J and fn(J) is not contained in any sink. Let
Sink(f) = { xe Il : fn(x) € J for some sink J and some n >0 } ,
Homt(f) = { x e I : f"(x) € L for some homterval L and some n >0 } .

Sink(f) and Homt(f) are clearly both open. We will see that both these sets are
f-invariant, Sink(f) n Homt(f) = @ and Sink(f) u Homt(f) = Z,(f) .

For f e M(I) and n>1 1let Per(n,f) denote the set of periodic points of

f with period n , i.e.

Per(n,f) = { x e 1 : f'(x) = x , f5x) # x for k=1,..., n-1)

There is a strong connection between sinks and "attracting" periodic points. To see
this, we need a couple of definitions. Let f € M(I) ; for x € Per(m,f) put

[x] = {x,f(x),...,fm'l(x)) , S0 [x] s the periodic orbit containing x . Let
a([x],f) denote the set of points in [ which are attracted to the orbit [x] ,
ie. a([x],f) ={yel: lim fmn(y) = fk(x) for some 0 < k <m } . Also let

n—+o

§([x],f) ={yel: fn(y) = x for some n >0 } ; thus &([x],f) consists of
those points in I which eventually hit the orbit [x] . Clearly

§([x],f) c e([x],f) , and &([x],f) 1is countable (because f'l({z)) is finite for
each ze I ). Now let f e M(I) and x € Per(m,f) ; then Proposition 4.3 shows

that either
(1)  o([x],f) = §([x],f) , (in which case a([x],f) is countable), or

(2) there exists a non-trivial interval J with x € J c a([x],f) such that

int(J) is a sink of f

Moreover, if (2) holds then ea([x],f) - 5([%],f) is a non-empty open subset of
Sink(f) . We say that x 1is attracting if (2) holds. ’



Let f eM(I) and M be the set of attracting periodic points of f (and

note that M is countable). Put ea(f) = u a([x],f) . Proposition 4.4 states that
xeM

if Per(m,f) is finite for each m > 1 then Sink(f) - a(f) and a(f) - Sink(f)
are both countable, and so in this case there is not much difference between the
sets Sink(f) and «(f) . The assumption in Proposition 4.4 (that Per(m,f) be
finite for each m > 1 ) will clearly be satisfied if f s the restriction to I
of an analytic function defined in some (complex) neighbourhood of I . Mappings
which have been used in applications are usually of this type (for example,

polynomial mappings).

Most of Section 4 is involved with a general analysis of the sinks of a mapping
f e M(I) . This is very straighforward, and the material is taken, with only minor
modifications, from Section 5 of Preston (1983), which in turn was based on results
and ideas from Guckenheimer (1979), Collet and Eckmann (1980) and Misiurewicz

(1981).

Section 5: Examples of register-shifts Here we give a couple of simple examples to
demonstrate that register-shifts actually occur. The mappings we consider are not
smooth, but they have the advantage of being defined explicitly, and they are very

easy to analyse.

Our first example of a mapping having a register-shift is similar to one
occurring in Milnor and Thurston (1977). Let I = [0,1] , and for each n > 0 1let

a, = %(1—3’”) and put f(a)) = %(1—6“”) . Now define f to be linear on each

2—n+1

interval [a n>0 (and so f has slope on [an,an+1] ). This

n’an+1] ?

defines f as a strictly increasing, continuous function on [0,%) . Put f(%) = %
and let f(x) = f(1-x) for x € (%,1] . Then f e M([0,1]) , f(0) = f(1) = 0 and
% is the single turning point of f .

The reason for defining f in this way is that we then have the following

"self-similarity" property (which is proved in Lemma 5.2): fz( %,%]) C [l 2] , and

3°3
if g is the restriction of f2 to (3,2] then g(x) = 3(2 - f(2-3x)) for all
- \4
X € [%,é] , i.e. g = pofoy L' where Y . [0,1] - [%,%] is the linear change of

variables given by ¥Y(t) = %(Z-t) . (This means that g is just f turned upside

down and scaled down by a factor of 3 .) Using this property and induction we



construct a decreasing sequence of proper f-cycles (Kn}n>1 with per(Kn) = 2" for

each n>1 . In Lemma 5.4 we show that Z(f) =@ , and hence R = n Kn is an
n>1

f-register-shift. Moreover, it follows from Lemma 5.3 that [0,1] - A(R,f) s

countable.

let f eM(I) and R be an f-register-shift; we say that R is tame if there
exists an f-cycle K with R c K such that K - A(R,f) 1is countable. (In Section
9 we show that the structure of a tame register-shift is somewhat special.) The
example given above is thus tame. However, it is easy to modify this example to
obtain a non-tame register-shift. In fact, again let I = [0,1] , and for n >0
let a = 2(1-7") and f(a,) = 22(1-287") . Define f to be Tinear on

[an,an+1] ,n>0 (and so f has slope 2-4°" on [an,an+1] ). As before this

~

<

defines f as a strictly increasing, continuous function on [O,%) . Put f(%) = &
and for x € (%,1] let f(x) = f(1-x) . This mapping f also has a
"self-similarity" property, namely: f3([§,§]) C [;,;] , and if g is the
restriction of f° to [3,5] then g(x) = 3(4 - £(4-7x)) . (This means that g is
just f turned upside down and scaled down by a factor of 7 . ) As in the first
example, this property allows us to construct a decreasing sequence of proper
f-cycles (Kn}n21 , this time with per(Kn) =3" foreach n>1. Again we have

I(f) =@, and so R = n Kn is an f-register-shift. However, we show that in this
n>1

example R is not tame.

The reason that the register-shift in the second example is not tame is because
the interval [;,;] sits in [0,1] 1in a complicated way; more precisely, the set
{ x € [0,1] : fn(x) ¢ [%,;] for all n > 0 } contains a Cantor-like set, and is
thus uncountable. This is in contrast to the first example, where the corresponding
set (i.e. { x e [0,1] : fn(x) ¢ [%,%] for all n > 0 } ) consists only of the two

points 0 and 1 .

Section 6: A proof of Parry’s theorem In this section we give a proof of the

following result in Parry (1966):

\\.
Theorem 6.1 If f e M(I) 1is topologically transitive then f is conjugate to a

uniformly piecewise linear mapping.
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We do not use Parry’s proof, but instead one taken, with a few minor modifications,

from Milnor and Thurston (1977).

Let V(I) = { Y eC(I) : ¥ 1is increasing and onto } (where by increasing we
mean only that ¥(x) > ¥(y) whenever x >y ). If Y e V(I) and g € M(I) then we
say that (¥,g) is a reduction (or semi-conjugacy) of f € M(I) if yof = gop .
Lemma 6.2 states that if f e M(I) is topologically transitive and (¥,g) is a
reduction of f then ¥ is automatically a homeomorphism, and so in particular f
and g are conjugate. Lemma 6.2 reduces the proof of Theorem 6.1 to showing that if
f e M(I) 1is topologically transitive then there exists a reduction (¥,g) of f

with g uniformly piecewise linear.

For f e M(I) let £&(f) = |[T(f)| + 1 , and also let h(f) = inf % Tog 2(f") ;
n>1
thus h(f) > 0 . Lemma 6.3 shows that in fact h(f) = Tim % log Q(f") for each

n-+o

f eM(I), and in Lemma 6.4 we show that h(f) > 0 whenever f is topologically
transitive. Theorem 6.1 therefore follows from Theorem 6.5, which says that if
f e M(f) with h(f) > 0 then there exists a reduction (¥,g) of f such that g

is uniformly piecewise linear with slope B , where B = exp(h(f))

Theorem 6.5 and its proof are due to Milnor and Thurston. The proof goes
roughly as follows: Fix f € M(I) with h(f) > 0 and put r = exp(-h(f)) ; thus
r=1/8 and 0 < r <1 . Note that by Lemma 6.3 we have B = Tim E(fn)l/n , and

n—+wo

hence r is the radius of convergence of the power series J 2(FMt" 5 in
n>0

particular the series L(t) = ¥ Q(fn)tn converges for all t € (0,r) . Now let
n>0

Jc I be anon-trivial closed interval, and for n > 0 Jlet
e(FM3) = |T(F") A int(d)| + 1 . Then 2(f"|J) < 2(f"|1) = £(f") , and therefore the

series L(J,t) = Q(fnld)tn also converges for all t € (0,r) . Hence we can

1}

ngo
define A(J,t) L(Jd,t)/L(I,t) for each t e (0,r) (since L(I,t) =1L(t) #0),
A(J,

and we have 0 < t) <1, because L(J,t) < L(I,t) . In Lemma 6.10 it is shown

that there exists a sequence (tn}n>1 from (0,r) with 1limt_ = r , and such that

n-o

(A(J,tn)}n>1 converges for each non-trivial closed interval J c I . For each such

interval J we can thus define A(J) = lim A(J,tn) , and this gives us a mapping

n-+o

m : I~ [0,1] obtained by letting =(a) = 0 and =(x) = A([a,x]) for x € (a,b] .
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Lemmas 6.11, 6.12 and 6.13 show that the mapping = : I - [0,1] s continuous,
increasing and onto, that there exists a unique mapping « : [0,1] = [0,1] with
mof = aom , and that this mapping a 1is uniformly piecewise linear with slope B .
Thus, by a simple linear rescaling of a and m , we get a reduction (y,g) of f

such that g € M(I) is also uniformly piecewise linear with slope B8 .

At the end of Section 6 we give a result from Misiurewicz and Szlenk (1980),
which provides an alternative method of calculating h(f) for a mapping f e M(I)

For f e C(I) 1let
n-1
Var(f) = sup { kEO If(xk+1)—f(xk)| Dasag<x < <X =Db) .

In particular, if f € M(I) has turning points dl""’ dN , where

N
a=dy<dy <o <dy<dy,=b, then clearly Var(f) = kgo |f(dk+l)—f(dk)| . The

result of Misiurewicz and Szlenk says that if f € M(I) then h(f) >0 if and only

if 1im sup % log Var(fn) > 0 ; moreover, h(f) = lim % log Var(f") whenever

n—o n-e
h(f) > 0 . Consider the special case of a uniformly piecewise linear mapping
g € M(I) with slope B > 1 ; then this result shows that h(g) = log B8, (since gn
is uniformly piecewise linear with slope 8", and so Var(gn) = (b—a)Bn for each
n>1).
Section 7: Reductions In this section we start the second stage in the analysis of
the iterates of a mapping f € M(I) . Up to now the main result has been Theorem
2.4, which gives us information about the asymptotic behaviour of the orbits
{fn(x)}n>0 for all points x lying in a residual subset A(f) of I . The set
[-A(f) ,7being the complement of a residual set, is topologically "small"; however,
the behaviour of f on this set can strongly influence the global complexity of the
iterates of f . In order to study this we look at the reductions of f : Recall
from Section 6 that if ¥ € V(I) and g € M(I) then (¥,g) is a reduction of f
if Yof = goyp . Let (¥,g9) be a reduction of f € M(I) ; then in a certain sense g

describes the behaviour of f on supp(¥) , where

\,

supp(¥p) = { x € T : ¥(J) 1is non-trivial for each open

interval Jc I with xedJ } .



