INTRODUCTION TO

IJL[JULL[QID

Third Edition

ROBERT H. HAMMOND

WILLIAM B. ROGERS

INTRODUCTION TO

Third Edition

ROBERT H. HAMMOND

Associate Professor Emeritus of Engineering
North Carolina State University

WILLIAM B. ROGERS

Professor of Engineering Fundamentals
Virginia Polytechnic Institute
and State University

McGraw-Hil Book Company

New York / St Louis / San Francisco / Auckland
Bogotd / Hamburg / Johannesburg / London / Madrid
Mexico / Montreal / New Delhi / Panama / Paris
Sdo Paulo / Singapore / Sydney / Tokyo / Toronto

INTRODUCTION TO FORTRAN IV

Copyright © 1983, 1978, 1976 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the
publisher.

1234567890 DOCDOC 898765432

ISBN 0-07-025908-9

This book was set in Univers by Automated Composition Service, Inc.

The editors were Julienne V. Brown, Kiran Verma, and Madelaine Eichberg;
the cover was designed by Joseph Gillians;

the production supervisor was Phil Galea.

New drawings were done by J & R Services, Inc.

R. R. Donnelley & Sons Company was printer and binder.

Library of Congress Cataloging in Publication Data

Hammond, hobert H. ;
Introduction to FORTRAN V.

Includes index.

1. FORTRAN (Computer program language)
I. Rogers, William B., date Il. Title.
QA76.73.F25H36 1983 001.64'24 82-10028
ISBN 0-07-025908-9 AACR2

PREFACE

Anyone presumptuous enough to write a textbook must have attained a knowledge of the
subject matter significantly greater than the students for whom the textbook is written
and should be both able and willing to organize and enunciate a limited amount of that
knowledge in a manner readily comprehendible to those students. Unfortunately, increase
in knowledge is often accompanied by a proportionate decrease in'the author’s ability (or
willingness) to present the subject simply and directly in terms that are easily understood.
This paradox often results in a poor textbook, which is more a showcase for the author’s
erudition, written to impress colleagues, than an effective instructional manual dedicated
to explaining and clarifying the details of the subject for the uninitiated.

The authors of this text have certainly increased their individual and collective knowl-
edge of FORTRAN since the publication of the earlier editions, and the temptation to
display that new knowledge is great. We have also tried to remember that each beginning
student opens the game at the same square one where all the preceeding students started
and advances one square at a time toward the goal. Some, with prior knowledge or an
aptitude for the game, learn rapidly and are able to advance faster, but this cannot be
assumed. A beginning text must address the person meeting the subject for the first time
in terms that are understandable to that person. Every square must be touched, and in
some cases it is necessary to go back a few squares and repeat the moves.

A conscious and determined effort has been made in writing this book to organize and
cross-reference the material so that the student is never left mystified by an unexplained
term or concept. Many example programs are included. Some explanations, rules, and
cautions are repeated to the point of redundancy. Experience with beginning students has
demonstrated the need for such repetition.

This third edition contains virtually all the text material and illustrations from the first
two editions, but most of the text has been reorganized and rewritten in what the authors
believe to be a more easily learned and logical sequence. The essence of digital-computer
operations and the essentials of FORTRAN programming are presented in the first two
chapters. The chapters which follew build on the fundamentals established in Chaps. 1
and 2. Simple programming can begin with Chap. 2. The mechanics of card punching have
been moved to Appendixes A and B. A separate chapter on the flowchart has been elim-
inated. The structure of the FORTRAN language is discussed in detail but within the con-
text of the accompanying logic. The algorithm (flowchart) is not considered as a separate
entity but parallel with the related FORTRAN language program. Each new routine is
discussed both as a logical procedure and a program segment implementing that logic.
Specific system requirements which are not generally applicable have been avoided.

Additions to the third edition include an explanation of the use of inverse trigono-
metric functions in obtaining true values for azimuths and other angles which may exceed

vi

PREFACE

90°, expanded discussions of arrays and double-precision calculations, calculations with
complex numbers, and the use of the T and G specifications in the FORMAT statement.
Most of the chapters include problems that test the techniques presented. Some prob-
lems are short and simple, emphasizing a programming technique. Others are longer and
more complicated, requiring both application of tHe: technique and a careful analysis of
the logic of the solution. A few are relatively difficult. Most problems involve only the

_ relationships of ,mathemqtics and science with which a freshman student should be

familiar. A few problems require more advanced knowledge, and some research and/or
instructor assistance may be needed. There should be sufficient problem material to keep
the best students challenged for a semester or quarter course,

The authors acknowledge the valuable suggestions and criticisms provided by their
many colleagues and students who have used the earlier editions of this textbook and the
reviewers of the manuscript for this edition. Most of these reviewers are unknown to the
authors, but to one, Dr. Leendert Kersten of the University of Nebraska, special thanks
are due for his suggestions, which are embodied in Chaps. 4 and 10, Much credit for the
timely completion of the manuscript is due to Mrs. Mary Cunningham, of North Carolina
State University at Raleigh, who patiently typed and retyped the many drafts from the
authors’ notes.

Robert H. Hammond
William B. Rogers

CONTENTS

Preface v
1. The Digital Computer: Basic Concepts 1
2. ‘Fundamentals of Programming 17
3 Looping and Branching | 61
4. Common Mathematical Functions 83
5. Controlling Input/Output: The Format Statement 105
6. The DO Statement 157
7. Program Evaluation 183
8. Subscripted Variables and Arrays 193
9. Subprograms - 239
10. Computér Accuracy 269
11. Additional FORTRAN Techniques 291
APPENDIXES
A. Operation of the IBM 029 Card Punch and
Interactive Systems 315
B. Card Punching and Deck Assembly 321

Index 326

‘THE DIGITAL
COMPUTER:
- BASIC CONCEPTS

11

INTRODUCTION

There are two types of computers in wide use today: digital and analog computers. The
digital computer is essentially a counting device and operates with discrete numerical
quantities represented by a finite sequence of digits. The analog computer operates by
measuring the magnitudes of the quantities in an electric circuit which is set up to parallel
(or be analogous to) the equation of the phenomenon beinginvestigated. Analog-computer
results are often displayed as a curve on a cathode-ray tube with no discrete numerical
quantities shown. The needs of modern computations have led to the increasing use of
a combination of Higital and analog computers, known as a hybrid computer. Analog and
hybrid computers are not discussed in this text, which is limited to the general-purpose
digital computer.

1-2

THE BASIC COMPONENTS OF DIGITAL COMPUTERS

A general-purpose digital computer consists basically of five components or functional
units: input, storage, arithmetic, control, and output units. The relationship of these
functional units is represented by the block diagram in Fig. 1-1. Information is inter-
changed between these units as indicated by the arrows.

a The Input Unit The /nput unit puts instructions and data into the storage unit. A com-
mon input device is the card reader, illustrated in Fig. 1-2. A card reader senses the holes
punched in a computer card and transmits the coded information punched in the cards to
the storage unit. Other input devices that may be available include the keyboard, the tape
drive, and punched paper tape._ The choice of input unit is specified by an appropriate
code number in the input instructions.

2 THE DIGITAL COMPUTER: BASIC CONCEPTS

———‘-—d
Control unit —_—— -
I e ‘ 1
I | j |
[T Y |
| |
| I v
| - = 1
I b
n Y u u
+ o n g Storage - t n
i ! = unit s p i
l ¢ ¢ u t
| t
FIG. 1-1 I
Basic components, or func- «
g . e | Y A
tional units, of a digital com-
puter. Solid lines represent |
flow of information (data); .))
dashed lines represent flow of SESES S S Arithmetic unit
control signals.

FIG. 1-2
IBM 35@5 card reader. (/BM.)

1-2 THE BASIC COMPONENTS OF DIGITAL COMPUTERS 3

FIG. 1-3
IBM @29 card punch. (/18M.)

Before being placed in the card reader, blank computer cards must be punched on a
machine called a card punch (Fig. 1-3). Depressing the character keys of the card punch
causes one or more rectangular holes to be punched in the card. (The character punched
may also be printed at the top edge of the card.) Each hole or column of holes represents
a specific character to the card reader. Brief instructions covering the manual operation
of the IBM @29 Card Punch are provided in Appendix A.

b The Storage Unit The storage unit of the early digital computers consisted of many
core planes (Fig. 1-4), each made up of a number of ferrite cores (or rings) strung on
hair-thin wires. Depending on how current was passed through those wires, each ring
could be magnetized with either a clockwise or counterclockwise magnetic field. As com-
puters increased in storage capacity, more space was required to house these core planes
and size became a limiting factor. This problem of expanding size has been overcome by
using ultraminiature electronic components; the storage unit of most present-generation
computers consists of solid-state electronic circuitry instead of ferrite rings. But whether
a ferrite ring is magnetized with a given polarity or an electronic gate is open or closed,
the storage unit of any computer still functions as an integrated assembly of many two-
state, or binary, devices. In an ON or OFF position, these binary devices may represent,
respectively, YES or NO, PLUS or MINUS, ONE or ZERO, etc. A group of binary devices
is referred to as a WORD, T each WORD having a unique retrievable address.

Tin this text WORD stands for a binary word, as distinguished from an ordinary spoken or written
(language) word.

FIG. 1-4

(a) Core plane with ferrite
on intersecting

cores visible
conductors.

larged drawing - f a core.

4

(18M.)

THE DIGITAL COMPUTER: BASIC CONCEPTS

Counterciockwise
Clockwise (cove state 1)
(core state @)

(b) En-

(b)

Distinctive features of the storage unit of a general-purpose computer are destructive
read-in and nondestructive readout. Each time information is stored in a given WORD,
the previous contents of that WORD are erased as the new data are read in. However,
the contents of that WORD can be moved to another WORD with a different address
without changing the contents of the original WORD. This feature is important to re-
member in preparing instructions for the computer. A second characteristic of this type
of storage unit is called random access, which means that.any WORD address in the
storage unit is as easy to find as any other address and takes the same amount of time.

Auxiliary storage capacity can be added by using magnetic tapes or discs. Access to
information stored on tape is sequential. This means that to retrieve a given item the
entire tape must be examined from some starting point to the location of the desired
information. Thus, it may take more time to find one WORD than another. The mag-
netic disc is a cross between random and sequential access and requires less time to search
than the tape. The discussion in this text.will be confined to the basic random-access
storage unit. Students who have advanced to the point where auxiliary storage capacity
is required should consult the systems manual on file at the local computing center for
additional information.

The storage unit is also known as the memory unit. The term ‘‘memory’’ is avoided in
this text because it implies the hurnan capability to remember. To those unfamiliar with
the computer, it also implies the ability to think. Both these implications are misleading.
A computer does not remember, nor does it think for itself. The computer does pre-
cisely what it is instructed to do—nothing more, nothing less. The computer’s sequence of
operations and the results thereof depend solely upon the instructions it receives from a
human programmer. A common expression among computer people is ‘‘garbage in—
garbage out,”” which means that unless the logic of the program is correctly planned to
perform the desired calculations, the output will be meaningless or misleading.

1-2 THE BASIC COMPONENTS OF DIGITAL COMPUTERS b

¢ The Arithmetic Unit The arithmetic unit is a portion of the computer set aside for per-
forming the basic arithmetic operations: addition, subtraction, multiplication, and divi-
sion. It also provides temporary storage for holding the results of these operations. This
small storage unit is known as the accumulator.

d The Control Unit The contro/ unit is the heart of the modern digital computer; it
selects an instruction and causes the computer to obey that instruction whether it is to
read a data card, perform some arithmetic operation, compare two values, or print re-
suits. The control unit consists primarily of two parts: a small storage unit known as the
instruction register (IR) and a device called the instruction counter (IC).

e The Output Unit Printed results from the computer can be obtained from the printer
(Fig. 1-5). This machine prints the pages of results commonly associated with computer
systems. Other output units punch cards, store information on magnetic or punched
paper tape, use the typewriter on the computer console or remote terminal, or display
results on a cathode-ray tube (CRT). The choice of output unit is specified by an app*
priate code number in the output instructions.

FIG. 1-5
IBM 3211 lire printer. (/BM.)

THE DIGITAL COMPUTER: BASIC CONCEPTS

1-3 :

THE STORED-PROGRAM CONCEPT

Before any problem can be solved on the computer, a set of step-by-step instructions
must be written which state precisely how to solve the problem. This set of instructions is
called a program. The program must be written in a /anguage which the computer can
understand. Each step of the program is called a statement. For card input, each state-
ment is punched on a separate card called an instruction card. After all instruction cards
have been punched and arranged in order, each item of numerical data is punched on a
card. These cards, called data cards, follow the last instruction card. Depending upon how
the program is written, each item of data may be punchéd on a separate card or many
items af data may be punched on the same card.)

In the preceding paragraph we stated that the program must be written in a language
which the computer can understand. Actually, the computer can understand only machine
language, a'langliage which is complex and lengthy. The computer cannot directly inter-
pret the user-oriented language. A prestored intermediate program translates the user-
oriented language (FORTRAN) into the machine-oriented language of the computer. This
prestored translator program is called a compiler. Most compilers also include diagnostic
routines which print ERROR messages identifying predictable programming errors. This
capability will be discussed in more detail in Chap. 7. Another usual output of the com-
piler is a list of the statements read so that the programmer can see in printed form what
was actually read from the punched cards.

The computer solution to a particular problem is separated into two ‘phases: (1) the
entire set of instructions (or program) is read, translated, and filed in the storage unit,
each individual instruction occupying a WORD (or WORDS as required) with a distinct
address; this first phase (reading the program, translating, and filing it in the storage unit)
is called compifaﬁon'. (2) Each separate instruction is called sequentially from the storage
unit and held temporarily in the instruction register of the control unit while that instruc-
tion is executéd; this second-phase (performing the specified operation) is called execution.
This two-phase procedure, in which the computer: first stores the program in its entirety
(compilation) and then automatically and sequentially follows those instructions (execu-
tion), is known as the stored-program concept and is the essence of digital-computer
operation. g . . :

Consider a simple arithmetic problem: the sum of two numbers such as 32 + 18 = 50.
Without attempting to simulate any actual computer language but using instructions un-
derstandable to the reader and assuming computer acceptability, the following program
has been written to read two numerical values, 32 and 18, punched on two data cards,
and to compute and print the sum. (Each instruction is assumed to have been punched
on an individual instruction card and identified alphabetically by letters A, B, C, etc. The
numerical values 32 and 18 have each been punched on a separate data card.)

Instruction A: Read a data card and store its value in address 2-1. '
Instruction B: Read the next data card and store its value in address 2-2.
Instruction C:. Copy the value in address 2-1 into the accumulator.

Instruction D: Add the value in address 2-2 to the value in the accumulator.

Instruction E: Store the value in the accumulator in address 2-3.

Instruction F: Print the value in address 2-3.

(End of instructions)
Data: 32
Data: 18

1-3 THE STORED-PROGRAM CONCEPT 7

Figure 1-6 represents a graphical simulation of the five functional units of the com-
puter described in Sec. 1-2. The storage unit provides for 3@ WORDS, whose locations are
specified by a two-digit numerical address identifying the row and column, respectively.
(For example, the address of the bottom right space or WORD is 5-6, row 5, column 6.)
The XX'’s in the storage unit, the instruction register (IR), instruction counter (IC), and
the accumulator represent miscellaneous information remaining in storage after comple-
tion of the previous program. When current information is read into storage, previously
stored information will be destroyed. To start the sequence, the card deck is placed in the
card reader (as indicated in Fig. 1-6), the START button is pressed, and action begins.

The condition of the computer after all instructions have been read in (compilation is

Deck of punched cards

Data 32

Control | 2 | xx ic | xx
unit
Storage unit
1 2 3 4 5- 6
1 XX | XX | XX | XX | XX | XX
\ 2 xx | xx | xx | xx | xx | xx
3 XX [XX | XX | XX | XX | XX
4 XX | XX | XX [XX | XX | XX
5| XX | XX XX | XX | XX | XX
Arithrpetic Accumulator | XX
unit

Output
unit

Address 5-6

FIG. 1-6

Simulation of computer ready
for input of instructions (IR =
instruction register; IC = in-
struction counter).

FIG. 1-7

8 THE DIGITAL COMPUTER: BASIC CONCEPTS

ConFrol IR | xx 1 1-1
unit
Data 32 Storage unit

1 2 3 4 5 6

1M1 A B C D E F

2| XX | XX XX | XX | XX XX
. Output
unit

3 XX | XX | XX | XX | XX | XX

4 XX | XX | XX { XX | XX | XX

gl XX | XX | XX | XX | XX | XX

Y 4

Arithmetic
unit

Accumulator | XX

Simulation of computer ready

for execution.

complete) is shown in Fig. 1-7. Instructions A, B, C, D, E, and F are stored sequentially in
WORDS with addresses 1-1, 1-2, 1-3, 1-4, 1-5, and 1-6, respectively. The information re-
maining from previous calculations (XX) has been destroyed in addresses 1-1 to 1-6 and
replaced by the new and relevant information. Note that the instruction counter (IC) has
been automatically set to the address of the first instruction (1-1). Execution of the pro-
gram begins.

In Fig. 1-8 the first instruction (instruction A in address 1-1) has been “‘copied’’ into
the instruction register, destroying the previous instruction (XX) but leaving instruction
A unchanged in address 1-1. The computer then executes instruction A:

Read a data card and store its value in address 2-1.

The first data card in sequence is read, and the numerical value punched on it (32) is
stored in address 2-1. The IC automatically increments to the next address in sequence
(1-2).

Figure 1-9 illustrates the execution of instruction B. The IC calls for the instruction in
address 1-2 (instruction B) to be copied into the IR, destroying the previous instruction

-(instruction A). Note that instruction B remains unchanged in address 1-2. The computer

then executes instruction B:

Read a daia card and store its value in address 2-2.

1-3 THE STORED-PROGRAM CONCEPT 9

j Data 18

Data 32

Data 18

Control | yg | & ic | 11 -
unit
Storage unit
1 2 4 5 6
11 A B C D E F
21 32) XX | XX | XX | XX | XX
Output
3l xx | xx | xx | xx | xx | xx tl
a4l XX | XX | XX | XX | xx | xx
gl XX | XX | XX | XX | xx | xx
¥ 3
2 Simulation of computer after
i . 7 execution of instruction A:
A”‘h’}‘t"“c Accumulator | XX READ A DATA CARD AND
e STORE ITS VALUE IN AD-
DRESS 2-1.
i
Control | g | 8 ic |12
unit
Storage unit
1 2 3 5 6
i1l AlB|l c| D| E F
2| 32 18 XX | XX | xX | XX
Qutput
3l xx | xx | xx | oxx | xx | xx et
4 Xx | xx | xx | xx | xx | xx
5 XX | XX XX | XX | XX | XX
! + FIG. 19
Simulation of computer after
Arith . execution of instruction B:
”‘unf}‘te“c Accumulator | XX READ A DATA CARD AND
STORE ITS VALUE IN AD-

DRESS 2-2.

FI1G. 1-10

Simulation of computer after

execution of instruction C: . .
COPY THE VALUE IN AD- Arithmetic Accumulator | 32
DRESS 2-1 INTO THE AC- unit

CUMULATOR.

10

THE DIGITAL COMPUTER: BASIC CONCEPTS

Control
unit

4

1 2 31 4 5 6
1 A.| B c D E F

2| 32| 18 | xx [xx | xx | xx
3| XX XX | XX | XX | XX

a| xx xx\q xx | xx | xx

>
I3}
o
s
&

——
<

Stora; unit

XX | XX xx\ XX | Xx | XX
5 . \

¥ <4

The next data card in sequence is read, and the numerical value punched on it (18) is
stored in address 2-2. The IC automatically increments to the next address irr sequence
(1-3).

In Fig. 1-10 the instruction in address 1-3 (instruction C) has been copied into the IR.
Instruction C is executed:

Copy the value in address 2-1 into the accumulator.

The value in address 2-1 (32) is copied into the accumulator, where arithmetic operations
are performed. The previous value in the accumulator has been erased. The IC now incre-
ments to 1-4.

The instruction in address 1-4 (instruction D) is copied into the IR (Fig. 1-11). Instruc-
tion D is executed:

Add the value in address 2-2 to the value in the accumulator.
The value in address 2-2 (18) is added to the value in the accumulator (32). The sum (50)
replaces the previous value {32) in the accumulator. The IC increments to 1-5.

The instruction in address 1-5 (instruction E) is copied into the IR (Fig. 1-12). Instruc-
tion E is executed:

Store the value in the accumulator in address 2-3.

The value in the accumulator (5@) is copied into address 2-3. The IC increments to 1-6.

1-3 THE STORED-PROGRAM CONCEPT 11

Control | g | p ic | 1-4
unit
Storage unit
1 2 3 \4 5 6
11 A B C D E F
2| 32 18 XX | XX | XX | XX
3| XX | XX XX | XX [XX [XX
4] XX | XX | XX | XX | XX | XX
5| XX | XX XX | XX | XX | XX
Arithmetic Accumulator | 50
unit
Cantrol' | 3 | & ic |15
unit
Storage unit
1 2 3 4 5 6
1 A B8 C D E XX
21 32 | 18 | 5@ | XX | xx | xx
3 XX | XX | XX [\XX | XX [XX
af xx | xx | xx x\ XX | xx
5 XX | xx | Xx xx\ XX | Xx
Arithrpetic Accumulator | 50
unit

Output
unit

FIG. 1-11

Simulation of computer after
execution of instruction D:
ADD THE VALUE IN AD-
DRESS 2-2 TO THE VALUE
IN THE ACCUMULATOR.

FIG. 1-12

Simulation of computer after
execution of instruction E:
STORE THE VALUE IN THE
ACCUMULATOR IN AD-
DRESS 2-3.

