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Preface

This volume contains the papers presented at the 4th European Performance
Engineering Workshop held during September 27-28 in Berlin.

There were 53 submissions. Each submission was reviewed by at least three
Programme Committee members. From these, the committee decided to accept
20 papers.

We were very happy to have Isi Mitrani from Newcastle University give a
keynote lecture on his recent work and future challenges in applied queueing
theory.

The submitted papers cover all areas of performance engineering. We were
able to compose an interesting program in six sessions, including sessions on
theoretical work in performance engineering techniques as well as sessions pre-
senting applications of performance engineering techniques. The final workshop
program, as well as this volume, comprises the thematic sessions:

— Markov Chains

Process Algebra

Wireless Networks

— Queueing Theory and Applications of Queueing
Benchmarking and Bounding

Grid and Peer-to-Peer Systems

The volume includes very theoretical papers on topics such as bounds in stochas-
tic ordering, canonical representation of phase-type-distributions and algorithms
to solve closed queueing networks. Some papers study properties of numerical so-
lution algorithms, other contributions evaluate hardware or software design and
propose benchmarks. On the application side there are, furthermore, evaluations
of wireless protocols, simulation studies of distributed systems and performance
evaluation of system monitoring tools. We hope that this volume will provide a
reference for fundamental work in performance engineering.

The success of the workshop is due to many helping hands. First of all, the
members of the Program Committee were very cooperative, spent much time on
reading and evaluating the submitted papers and gave advice where needed. Luck-
ily, Miklos Telek passed on his experience after organizing last year’s workshop.

Thanks to Levente Bodrog from Budapest the workshop had a professionally
designed Web site. The EasyChair conference management software eased the
administration of the PC meeting and composition of this volume. We thank the
publisher for his support and continuity.

Last, but not least, I would like to thank the local organizers Johannes Za-
potoczky and Steffen Tschirpke. Philipp Reinecke derserves special thanks for
his help at all times.

July 2007 Katinka Wolter
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Optimization Problems in Service Provisioning
Systems

Isi Mitrani

School of Computing Science
Newcastle University
Newcastle upon Tyne

United Kingdom
isi.mitrani@ncl.ac.uk

A service provisioning system typically contains a number of servers which may
be distributed, heterogeneous and intermittently unavailable. They are used by
the host in order to offer different services to a community of users. There may or
may not be Service-Level Agreements involving Quality of Service constraints. In
this context, there are several areas where dynamic optimisation problems arise
quite naturally. These are (a) Routing and load-balancing: Where should an in-
coming request be sent for execution? If some queues grow large while others are
short, can something be gained by transferring jobs among them? (b) Resource
allocation: If different servers are dedicated to different types of service, how
many should be assigned to each? When should a server be switched from one
type of service to another? (c) Revenue maximisation: How are resource alloca-
tion and job admission policies affected by economic considerations? In partic-
ular, if service-level agreements specify payments for serving jobs and penalties
for failing to provide a given quality of service, how many servers should be
assigned to each type of service and when should jobs of that type be accepted?

The talk will describe models that address the above problems and will dis-
cuss routing, allocation and admission policies that may be adopted in practical
systems.

K. Wolter (Ed.): EPEW 2007, LNCS 4748, p. 1, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Untold Horrors About Steady-State Probabilities:
What Reward-Based Measures Won’t Tell About
the Equilibrium Distribution*

Alexander Bell and Boudewijn R. Haverkort

University of Twente
Dept. Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, the Netherlands
a.bell@math.utwente.nl, brh@cs.utwente.nl

Abstract. These days, parallel and distributed state-space generation
algorithms allow us to generate Markov chains with hundreds of millions
of states. In order to solve such Markov chains for their steady-state be-
haviour, we typically use iterative algorithms, either on a single machine,
or on a cluster of workstations. When dealing with such huge Markov
chains, the accuracy of the computed probability vectors becomes a crit-
ical issue.

In this paper we report on experimental studies of, among others, the
impact of different iterative solution techniques, erratic and stagnating
convergence, the impact of the state-space ordering, the influence of the
processor architecture chosen and the accuracy of the measure of interest,
in relation to the accuracy of the individual state probabilities.

To say the least, the paper shows that the results from analysing
extremely large Markov chains should be “appreciated with care”, and,
in fact, questions the feasibility of the ambitious “5 nines programs” that
some companies have recently started.

1 Introduction

With the advent of high-level description languages for Markovian models, such
as those based on stochastic Petri nets or stochastic process algebras, it has be-
come easy to specify extremely large Markovian models. Also, the deployment
of structured and symbolic approaches towards state space generation, such as
those using Kronecker algebra and those based on, for instance, multi-terminal
binary decision diagrams, has made Markovian models with thousands of mil-
lions of states a reality. However, describing and generating state spaces is one
thing, solving the Markov chains associated with these enormous state spaces
is another issue. The largest Markovian models we are aware of that have been
solved numerically have close to a billion states [2]| (using an explicit state space
representation and a disk-based parallel solver). Clearly, currently the solution
step is lagging behind.

* The title of this paper has been inspired by [11].

K. Wolter (Ed.): EPEW 2007, LNCS 4748, pp. 2-17, 2007.
© Springer-Verlag Berlin Heidelberg 2007



Untold Horrors About Steady-State Probabilities 3

In this paper we address the question of 1 how much confidence one actually
can have in performance and dependability measures derived from numerical
steady-state solutions of such extremely large Markov chains. What can we ac-
tually say about the accuracy of the computed probabilities? When we have
so many states, can we still compute the state probabilities accurately enough?
And how do the numerical algorithms “react” on such very small probabilities?
Furthermore, if we employ parallel algorithms for the solution of the steady-state
probabilities, does the way in which we distribute the state space over the nodes
or the timing of information-exchange between the nodes (non-determinism) af-
fect the accuracy of the measures we compute?

In order to illustrate our thoughts with experimental data, we present re-
sults for a generalised stochastic Petri net (GSPN) that has been used by many
researchers in the past, the Flexible Manufacturing System (FMS) model [3].
This choice also gives us the ability to compare results computed at four dif-
ferent sites, i.e., at the RWTH Aachen, at the College of William and Mary, at
Imperial College, and, most recently, at the University of Twente.

The result of our paper is not so much a recipe for obtaining steady-state
probabilities that are always accurate enough. Instead, the aim of the paper
merely is to show how difficult it is to actually obtain accurate results, and shows
pitfalls and problems that will be all around. In doing so, it actually shows that
determining very accurate performance and dependability measures, like needed
in the “5 nines programs” of some industrial research laboratories (implying to
determine, in a model-based fashion, that the system long-term availability is
at least equal to 0.99999, which coincides with a downtime of, roughly, only 5
minutes per year), is far from trivial. In fact, the practical feasibility of such
endeavours must be seriously questioned.

The rest of this paper is organised as follows. Section 2 addresses specific issues
related to the employed numerical algorithms, and in Section 3 we present exper-
imental results based on our computations and compare them to other published
results. Finally, Section 4 concludes the paper with a summary and outlook.

2 TIterative Solvers for Markov Chains

For the solution of very large Markov chains, only iterative solutions can be em-
ployed; their background is rehearsed in Section 2.1 (for more details on iterative
methods for Markov chains, see [10]). Since these iterative methods only pro-
duce approximations of the solution, we discuss in Section 2.2 how to make sure
that a certain accuracy has been achieved. Section 2.3 gives background on the
usually employed floating point number representation. Because the computed
state probabilities often differ by several orders of magnitude, we address the
problem caused by summing large numbers of such values in Section 2.4.

2.1 Background

During the computation of the steady-state distribution for a CTMC with gener-
ator matrix () iterative linear equation solvers compute a sequence of
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Abstract. These days, parallel and distributed state-space generation
algorithms allow us to generate Markov chains with hundreds of millions
of states. In order to solve such Markov chains for their steady-state be-
haviour, we typically use iterative algorithms, either on a single machine,
or on a cluster of workstations. When dealing with such huge Markov
chains, the accuracy of the computed probability vectors becomes a crit-
ical issue.

In this paper we report on experimental studies of, among others, the
impact of different iterative solution techniques, erratic and stagnating
convergence, the impact of the state-space ordering, the influence of the
processor architecture chosen and the accuracy of the measure of interest,
in relation to the accuracy of the individual state probabilities.

To say the least, the paper shows that the results from analysing
extremely large Markov chains should be “appreciated with care”, and,
in fact, questions the feasibility of the ambitious “5 nines programs” that
some companies have recently started.

1 Introduction

With the advent of high-level description languages for Markovian models, such
as those based on stochastic Petri nets or stochastic process algebras, it has be-
come easy to specify extremely large Markovian models. Also, the deployment
of structured and symbolic approaches towards state space generation, such as
those using Kronecker algebra and those based on, for instance, multi-terminal
binary decision diagrams, has made Markovian models with thousands of mil-
lions of states a reality. However, describing and generating state spaces is one
thing, solving the Markov chains associated with these enormous state spaces
is another issue. The largest Markovian models we are aware of that have been
solved numerically have close to a billion states [2] (using an explicit state space
representation and a disk-based parallel solver). Clearly, currently the solution
step is lagging behind.

* The title of this paper has been inspired by [11].
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(k) 5 : _ k) _ {720 —g 1) _
of 7'%) equals 1 or by using the criterion e'\*) = max; 4—L—| er < 6, which

computes the relative error between two successive approximations.

Secondly, it may falsely detect convergence if the iteration process converges
very slowly, hence, the difference between two successive approximations is smaller
then 6, even though an appropriate solution would require far more iterations.
Stewart [10] suggests to check the differences of non-successive approximations
() —mEm))

||
imations lying m iterations apart are compared. Note that m is not required to
be constant, but may be chosen as a function of the convergence rate or the itera-
tion count. An obvious disadvantage of this criterion is the fact that an additional
old approximation has to be stored whereas the comparison of two successive
approximations can be done on-the-fly even for a Gauss-Seidel iteration using only
a single vector.

The stopping criteria discussed above can only be used if the successive ap-
proximations get better during each iteration step. If the method exhibits so-
called erratic convergence (see the example in Section 3.3 for the CGS method
[9]), then no conclusions about the achieved accuracy can be drawn from the
comparison of two successive (or m-step apart) approximations. Hence, stop-
ping criteria based on the residual ¥} = 7(*)Q should be used in conjunction
with the CGS method [2,6]. Of course, these can also be applied in combination
with the methods of Jacobi and Gauss-Seidel. The quality of an approximation
is better the closer the residual is to zero. Note that the standard definition of
the residual of a linear system Az = b is r = Az(¥) — b. As before, the absolute
magnitude of the entries in the residual vector can only be interpreted mean-
ingfully if we compare them to the magnitude of the (sought for) elements in

the solution vector. Hence, the most common stopping criterion based on the

(*)
residual is e(k) = H:r(’“’llll < 6. Again, any norm will do, but the maximum norm

is the most common choice. If we use it and rewrite the stopping criterion as
[|7®) || < 8||7®) || we see that the largest entry in the residual, which should
be as close to zero as possible, is at most 6 times the largest entry in the ap-
proximation vector 7(¥). For the rest of this paper, if not mentioned otherwise,
we will use this relative residual criterion as the stopping criterion. Note that
the residual can be computed at no additional cost during Jacobi and CGS
iterations [7].

A stopping criterion not based on the achieved accuracy but on the speed
of convergence can be applied to methods like Jacobi and Gauss-Seidel that
typically exhibit nearly monotone linear convergence up to a certain accuracy. If
this accuracy is achieved, often no further progress will be made. One can observe

. ) ; ; ’ . . (k—1)

this point by analysing the fraction of two successive error approximations e;—k;
An example where this point is reached will be given in Section 3.2. Note that
this criterion can also be used for approximations that are more than just one

iteration apart without the need to store the iteration vectors.

resulting in a stopping criterion e*) = max; < 6, where approx-
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approximations (), 7(1) 7(2) ... for the solution vector 7 of the linear sys-
tem 0 = 7@ (which we may rewrite as QTnT = 0 to correspond to the more
general representation of linear systems Az = b). Any iterative solver computes
the next approximation 7(*+1) by the iteration 7(+1) = H . 7() 4 ¢, where H is
called the iteration matrix. Clearly, one iteration step “costs” one matrix-vector
product (MVP). The number of iterations k required for an accuracy € can be

approximated from the spectral radius p of the iteration matrix H as k = lloﬁg—;

(see: [1,10]). Instead of the spectral radius the magnitude of the sub-dominant
eigenvalue can be used. Although this result looks very attractive it is of little
use in practice as the computation of the eigenvalues of H requires approxi-
mately the same effort as the computation of the steady-state solution. Hence,
other methods to detect convergence and hence to limit the number of iterations
k have to be used, as will be discussed below.

An important issue to address is the number of solution vectors that needs to
be stored at any point in time during the iterative solution process. Using double
precision floating point numbers, a single solution vector (which is non-sparse)
costs 8 megabyte per 1 million states. On a machine with 1 gigabyte of main
memory, roughly speaking, the solution vector for a Markov chain with 100 mil-
lion states can be stored, provided only a single iteration vector is required, such
as is the case for Gauss-Seidel. For the Jacobi method, already two vectors are
required, thus limiting the number of states to roughly 50 million. For Conjugate
Gradient Squared (CGS), even more vectors are required. In all these cases, it
is assumed that the matrix Q is either stored very compactly, recomputed on
the fly, or stored on disk. We note that whereas for the serial solution of the
steady-state probabilities methods like Gauss-Seidel, SOR, Jacobi and the CGS
can be employed, parallel implementations tend to use only the Jacobi and CGS
method as they can be parallelised more easily and efficiently.

2.2 Stopping Criteria

The simplest properties that can be used as stopping criteria are either to limit
the maximum number of iterations or the time spent computing them. This
surely limits the iteration count k but can not guarantee that the remaining er-
ror e®) = 7(k) _ 7 is smaller than some chosen limit. Better, but still traditional
stopping criteria are based on the norm of the difference of successive iterates
e® = ||7®) — z(:=1)|| ¢f. [10], where the iteration is stopped if this norm falls
below 6 > 0. Although any norm will do, the most popular choice is the maxi-
mum norm ||z||o = max; |z;|, as it requires the fewest floating point operations
to perform and no underflows or overflows can occur with it. This consideration
applies to all norms we will use in this section. This approach has several prob-
lems, though. First of all, it does not take into account the magnitude of the
(largest) elements of the solution vector, which, indeed, may all be very small
if the probability vectors consist of several hundreds of millions of entries. This
problem can be overcome by either scaling 7(*) in a way that the largest element



