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PREFACE

This textbook is intended to provide a clear, understandable, and motivated
account of the subject which spans both conventional and modern control theory.
The authors have tried to exert meticulous care with explanations, diagrams,
calculations, tables, and symbols. They have tried to ensure that the student is
made aware that rigor is necessary for advanced control work. Also stressed is the
importance of clearly understanding the concepts which provide the rigorous
foundations of modern control theory. The text provides a strong, comprehen-
sive, and illuminating account of those elements of conventional control theory
which have relevance in the design and analysis of control systems. The presenta-
tion of a variety of different techniques contributes to the development of the
student’s working understanding of what A. T. Fuller has called “the enigmatic
control system.” To provide a coherent development of the subject, an attempt is
made to eschew formal proofs and lemmas with an organization that draws the
perceptive student steadily and surely onto the demanding theory of multivari-
able control systems. It is the opinion of the authors that a student who has
reached this point is fully equipped to undertake with confidence the challenges
presented by more advanced control theories as typified by Chapters 18 through
22. The importance and necessity of making extensive use of computers is
emphasized by references to comprehensive computer-aided-design (CAD) pro-
grams. :

The establishment of appropriate differential equations te describe the
performance of physical systems, networks, and devices is set forth in Chapter 2,
which also introduces some elementary matrix algebra, the block diagram, and
the transfer function. The essential concept of modern control theory, the state
space, is dealt with also. The approach used is the simuitaneous derivation of the
state-vector differential equation with the single-input single-output differential
equation for a chosen physical system. The relationship of the transfer function
to the state equation of the system is deferred until Chapter 4. The derivation of
a mathematical description of a physical system by using Lagrange equations is
also given.

b 44
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The first half of Chapter 3 deals with the classical method of solving
differential equations and with the nature of the resulting response. This serves
the individual who needs to learn this material or needs a reference. Once the
state-variable equation has been introduced, careful account is given of its
solution. The central importance of the state transition matrix is brought out, and
the state transition equation is derived. The idea of an eigenvalue is next
explained and this theory is used with the Cayley-Hamilton and Sylvester
theorems to evaluate the state transition matrix.

The early part of Chapter 4 presents a comprehensive account of Laplace
transform methods and pole-zero maps. Some further aspects of matrix algebra
are dealt with before dealing with the solution of the state equation by the use of
Laplace transforms. Finally the evaluation of transfer matrices is clearly ex-
plained.

Chapter 5 begins with system representation by the.conventional block-
diagram approach. It is followed by a straightforward account of simulation
diagrams and the detérmination of the state transition equation by the use of
signal flow graphs. By deriving parallel state diagrams from system transfer
functions, the advantages of having the state equation in uncoupled form are
established. This is followed by the methods of diagonalizing the system matrix.
A feature of this chapter is the clear treatment of how to transform an A matrix

-which has complex eigenvalues into a suitable alternative block diagonal form
and the transformation to companion form.

In Chapter 6 the system characteristics are introduced. This includes the
relationship between system type and the ability of the system to follow or track
polynomial inputs.

Chapters 7 to 11 are updated versions of the same chapters in the previous
edition and present substantially the same material, with a greater emphasis on
CAD packages. In Chapter 7 the details of the root-locus method of analysis are
presented. Then the frequency-response method of analysis is given in Chapters 8
and 9, using both the log and the polar plots. These chapters include the
following topics: Nyquist stability criterion; correlation between the s plane,
frequency domain, and time.domain; and gain setting to achieve a desired output
response peak value. Chapters 10 and 11 describe the possible improvements in
system performance, along with examples of the technique for applying cascade
and feedback compensators. Both the root-locus and frequency-response methods
of designing compensators are covered.

The concept of modeling a desired control ratio which has figures of merit
that satisfy the system performance specifications is developed in Chapter 12.
The system inputs generally fall into two categories: (1) a desired input which the
system output is to track (a tracking system) and (2) a disturbance input for
which the system output is to be minimal (a disturbance-rejection system),
Desired control ratios for both types of systems are synthesized by the proper
placement of its poles and inclusion of zeros if required. Chapter 12 also includes
the Guillemin-Truxal design procedure for designing a tracking control system
and a design procedure for a disturbance-rejection control system.
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The technique of achieving desired system characteristics by using complete
state-variable feedback are developed thoroughly and carefully in Chapter 13.
The very important concepts of modern control theory—controllability and
observability—are treated in a simple, straightforward, and correct manner.
Although the treatment is brief, it provides sufficient coverage of these topics for
the requirements of the remainder of the book. This provides a useful foundatlon
for the work of Chapters 16 to 22.

Chapter 14 includes a presentation of the sensitivity concepts of Bode for
the variation of system parameters. Also included is the method of usmg
feedback transfer functions to form estimates of inaccessible states for use in
state feedback.

Additional matrix algebra is presented in Chapter 15 with particular
emphasis on quadratic forms. This material is used in the presentation of a short
account of some of the important aspects of stability considered from the
Liapunov point of view. An account of trajectories in the state space and some
associated phase-plane techniques is also given. A feature of this approach is that
the arguments are extended to nonlinear systems. The treatment of such systems
by linearization is presented. The use of a Liapunov function is presented for the
determination of system stability and instability. It serves as an introduction to
its use in establishing a performance index, as shown in Chapter 16.

Chapter 16 starts with a careful and comprehensive treatment of the use of
. performance indexes for the parameter-optimization methods for single-input
single-output systems. The chapter goes on to deal with the nature of the problem
of optimal control. The solution to the infinite-time linear quadratic problem is
deal with in extenso in terms of the algebraic Riccati equation, but the results are
derived using the Liapunov function approach rather than the calculus of
variations of the method proposed by Pontryagin et al. The heuristic advantages
of this approach for beginning students are very great. A treatment of the same
problem from the standpoints of the Bode diagram and root-square locus
underscores the essential unity of the subject and the mutuality of the modern
and conventional control theories.

Chapter 17 presents some methods of optimal linear system design. The
relationship of these methods to the conventional methods is stressed and
evaluated. Although the account is limited, for heuristic convenience, to single-
input systems, the subsequent correlation provides the student with the opportun-
ity to develop an invaluable insight into the nature of the linear quadratic
optimal control problem.

Chapters 18 and 19 provide a thorough presentation of the principles and
techniques of entire eigenstructure assignment for multiple-input multiple-output
systems by means of state feedback. This extends the use of eigenvalue assign-
ment to include the simultaneous assignment of the associated eigenvectors and
provides the medns for shaping the output response to meet design specifications.

There are many worthwhile control-system design techniques available in
the technical literature which are based on both modern and conventional control
theory. Each technique may have limited applicability to certain classes of design
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problems. The control engineer must have a sufficiently broad perspective to be
able to apply the right technique to the right design problem. For some tech-
niques the designer is assisted by available computer-aided-design (CAD)
packages. Design techniques like LQR, LQG, LTR, etc. are thoroughly covered
in the literature. ; :

Two additional design techniques have definite design characteristics that
warrant their inclusion in a textbook for both the beginning and the practicing
engineer. Thus, this third edition has been expanded to include, in Chapter 20, an
output feedback state-space technique based on singular perturbation theory and,
in Chapter 21, a conventional control technique based on quantitative feedback
theory (QFT). The authors feel that these methods have proven their applicability
to the design of practical multiple-input multiple-output control systems. These
chapters are intended to further strengthen the fundamentals presented earlier in
the text and to “whet the appetite” of the budding control engineer. Application
of the singular perturbation theory is applied to achieve robust output feedback
high-gain systems in Chapter 20. This leads to the design principles developed by
Professor Brian Porter which incorporate proportional plus integral controllers.
Chapter 21 presents an introduction to and lays the foundation for the quantita-
tive feedback theory (QFT) developed by Professor Isaac M. Horowitz. This
technique incorporates the concept of designing a robust control system that
maintains the desired’ system performance over a prescribed region of plant
parameter uncertainty.

Chapter 22 presents an introduction to digital control systems. The ad-
vances in digital computers and microprocessors have made their use very
attractive as components in control systems. The effectiveness of digital com-
pensation is clearly demonstrated. The concept of a pseudo-continuous-time
(PCT) model of a digital system permits the use of continuous-time methods for
the design of digital control systems.

The authors have tried to provide students of control engineering with a
clear, unambiguous, and relevant account of appropriate, contemporary, and
state-of-the-art control theory. It is suitable as an introductory and bridging text
for undergraduate and graduate students.

The text is arranged so that it can be used for self-study by the engineer in
practice. Included are as many examples of feedback control systems in various
areas of practice (electrical, aeronautical, mechanical, etc.) as space permits while
maintaining a strong basic feedback control text that can be used for study in
any of the various branches of engineering. To make the text meaningful and
valuable to all engineers, the authors have attempted to unify the treatment of
physical control systems through use of mathematical and block-diagram models
common to all. The text has been class-tested, thus enhancing its value for
classroom and self-study use. There are many computer-aided-design (CAD)
packages available to assist a control engineer in the analysis, design, and
simulation of control systems. Some of these are listed in Appendix B.

The authors express their thanks to the students who have used this book
and to the faculty who have reviewed it for their helpful comments and
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corrections, especially, Theodore Bernstein, University of Wisconsin; Robert
Fenton, Ohio State University; Frank Kern, University of Missouri-Rolla; A. A.
Moezzi, Florida Institute of Technology; E. Noges, University of Washington;
Floyd Patterson, North Dakota State University; David Tsui, Northeastern
University; and Carlin Weimer, Ohio State University. Appreciation is expressed
to Dr. R. E. Fontana, Professor Emeritus of Electrical Engineering, Air Force
Institute of Technology, for the encouragement he has given, and Dr. T. J.
Higgins, Professor Emeritus of Electrical Engineering, University of Wisconsin,
for his thorough review of the earlier manuscript.

Especial appreciation is expressed to Dr. Donald McLean, Professor at the
University of Southampton, England, formerly a visiting Professor at the Air
Force Institute of Technology. His perception and insight have contributed
extensively to the clarily and rigor of the presentation. Our association with him
has been an enlightening and refreshing experience. Important advanced con-
cepts are based on collaborative work with Professors Brian Porter, University of
Salford, England and Isaac M. Horowitz, Weizmann Institute of Science, Re-
hovat, Israel. Extensive reference to their work is given in appropriate chapters.
The personal relationship with them has been a source of inspiration and deep
respect.

" JohnJ. D’Azzo
Constantine H. Houpis
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