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INTRODUCTION

A number of definitions of equisingularity have appeared,
since Zariski published his '"Studies in Equisingularity". Those
definitions are equivalent in the particular case of plane algebroid
curves over an algebraically closed field of characteristic zero
(the situation that Zariski considered initially). However the case
of characteristic p >0 has not received extensive attention and
only a few papers are available: Lejeune (15), Moh (18), and

more recently Angermiiller [ 3 ).

These notes intend to give a systematic development of the
theory of equisingularity of irreducible algebroid curves over an
algebraically closed field of arbitrary characteristic, using as main
tool the Hamburger-Noether expansion instead of the Puiseux

expansion which is usually employed in characteristic zero.

The so called Hamburger-Noether expansion first appeared
as an attempt to obtain parametrizations of plane algebraic curves
in any characteristic. It was completely developed in a work by G.
Ancochea, published in Acta Salamanticiensis (Universidad de
Salamanca) and not available any longer. Essentially it is based on
a parametrization of an irreducible algebroid curve D = k((x,y])

over k of the type

x = x(z )
r
y =vy(z ),
Zr being an element of the quotient field of D , obtained from x,vy

by a chain of relations



where aji € k.

This expansion enables us to define a system of characteristic
exponents of a plane curve which is equivalent to that derived from the
Puiseux expansion in characteristic zero. These exponents determine
and are determined by the resolution process for the singularity of

the curve, by the semigroup of values of its local ring, etc...

Chapter | contains well known definitions and results on
algebroid curves, existence of parametrizations, and resolution of
singularities of an irreducible algebroid curve. Chapter |1l is devoted
to the Hamburger-Noether expansion and comparison of it with the

Puiseux expansion in characteristic zero.

In chapter |11, by using a complex model for the singularity
of a curve over an algebraically closed field of any characteristic,
we introduce the characteristic exponents. From this model we compare:
these exponents with the usual ones, and compute them in terms of

Hamburger-Noether expansions and Newton polygons.

The semigroup of values of the local ring of the curve is
calculated from the values of the maximal contact or from the
characterisitic exponents in chapter |V. We also find the relationship
between the characteristic exponents and the Newton coefficients

given by Lejeune.

Finally, in chapter V we study several criteria for

equisingularity of irreducible twisted curves.

| would like to express my sincere thanks to Professor

Aroca for his comments and suggestions.
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CHAPTER |

PARAMETRIZATIONS OF ALGEBROID CURVES

This chapter is devoted to the systematization of the
concept of local parametrization of irreducible algebroid curves
over an algebraically closed ground field of any characteristic.
Although there are not essential differences with the case of charac-

teristic zero, we have thought it useful to treat this case in detail.

1. PRELIMINARY CONCEPTS.

Let k be an algebraically closed field of arbitrary
characteristic. If X = {Xi} 1< <N is a set of indeterminates over
k, we shall denote by k((_)ﬁ)): k((x] 3 s e s ’XND the formal power

series ring in the indeterminates X with coefficients in k. The

function order on k[(ﬁ]) will be denoted by U

The Weierstrass Preparation Theorem (W.P.T.) will

be used frecuently in this work. It is stated down and its proof and
direct consequences may be found in Zariski-Samuel, (29).
Theorem 1.1.1.W.P.T.).- Let f(X) € k((X)) be a series which
is regular in XN of order s, i.e., s = _Q(f(O,...,O,XN)). Then,
there exist a unique unit U(X) in k([ﬁ]) and a unique degree s

. . i . ;
monic polynomial P((X ),XN) (where X's= (X1 e ’XN—1) ) in XN

with coefficients in k((ﬁ‘)) such that

F(X) = U(X) . PUXD,X ).



Definition 1.1.2.- An irreducible algebroid curve (or simply a

curve if there is no confusion) over k is a noetherian local domain

D such that:
1) D is complete.
2y O has Krull dimension 1.
3) k is a coefficient field for L[l

1f m is the maximal ideal of D , the property 3) means
that k is contained in D and is isomorphic to the field D/
m

by the canonical epimorphism O —_— D/
m

Remark 1.1.3.- Since D is noetherian, the vector space m/ 2
—"m
over k is finite dimensional. The number Emb(D)= dimk(m/ 2) is
—'m

called the embedding dimension of D .

E . _ 2 .

or every basis B {xi}1\<i< N of the maximal ideal m ,

2
S=tw + 8 heien

is a set of generators of the k- vector space m/ 2. The set S
m

becomes a basis of this vector space if and only if B is a minimal

basis of the ideal m.

Let B = {xi} 1¢i <N @ basis of m. Using 3) and the

completeness of D we find a natural surjective k-homomorphism

k((x)) —— 0O ,ox = Ax Y .
X, ee——= x

(1

Thus, there exists an isomorphism k((ﬁ))/ea< D , where p is a
prime ideal of k((ﬁ)) The condition 2) means that the depth of ]

is 1.

We may identify O with the ring k((ﬁ))/ . In fact, if

we set x. = Xi + p , we can write O - k((x],...,xN)). The minimun

N such that these iscmorphisms exist, is exactly Emb(D). When an



identification as above is done, we shall say that the curve is

embedded in an N-space. Thus, to give an embedded curve C is to

give a prime ideal pck[[ﬁ)) of depth 1. Then, D is called the local

ring of C. The word "embedding'" has a precise meaning in scheme

theory: The N-space is by definition the affine scheme Spec(k((X))),

the curve D is identified with Spec(D) and the homomorphism (1)

induces a closed embedding of schemes Spec(D) —> Spec(k[(X])).

Now we shall give the following normalization theorem which
allows to simplify the form of the ideal p. Notice the assumptions that
p is prime and of depth 1, which do not affect the proof. Therefore,

we shall prove it for any ideal a of a formal power series ring.

Theorem 1.1.4.- Let Y = {Yi}1<i<N’ ﬁ={Xi} 1< i <N be two

' an ideal of k((Y)), a'# (0),(1).

sets of indeterminates over k and a
There exists an integer m, 0 <m <N-1, and an isomorphism @ from
k((Y)) onto k((X)) defined by linear relations @(Yi) = Li(_>_() i

1 €i £ N, independent over k, such that the ideal a = @ (a") has

the following properties:
1) _a_nAm=(O), gnAi¥(O),m+1<i<N;
where A = k((x1,...,xi)) , 0<i< N.
2) There are N-m non zero series fi(X1,...,Xi) € gnAi,
m+1< i €N, such that

B0,y 0, X)) = DX X))

Proof: We shall construct by induction the isomorphism @

First, let us construct an isomorphism @(1) from k((x))

onto k((i(”)) , with X(”= {YE'I)}1< (g N Mew variables, such
that if g(” = @(1)(9_') , then there exists f“) € g“) verifying
wirlo, 0y = (f(,\])(Y:”,...,Y('LS\I)).

To prove this, take f;\l € a', f! #0. (1L)et fN,q the leading
form of f;\l' | f fN,q(O,...,O,YN);éO we set Yi :Yi s 1€ 1 <N,



1
Q( ) the identity in k((Y)), and fe = fn o HE g (0,...,0,Y =0
» g
1
we pick out af )€ k, 1 <i <N-1, such that f (a(]),..., (]5\1 ,1)£0
i N, q 1 N -
(Hilbert's Nullstellensatz). Then, the linear forms
L(_])z YF1)+aF])Y(]) , 1 €i £ N-=1
i i i N
(1) (1)
LN B YN
are lineary independent over k and the isomorphism

3V k() —— k(¥
(1)(Y(1)

Vg et L. Y )
1 1
and the series f(N) = @( )(f[\} ) € g(]) verify our conditions.
; (p
Now, let p be an integer, 1 <p <N, and Y _{YI )1<|<N

indeterminates over k. Assume that there exists an isomorphism

(p) $ k((YJJ —_— k((Y(p))) given by lineary independent forms

such that, if g(p) Q(p)(g'),ther‘e exist non zero series
f?p) L k([Y ,Y(i"”)) , N=(p-1) € i €N, such that
g(f( )(Y(p) ..,Y?p))) = v (ffp)(o,...,o,v(ip))).
Assume that
ST (CH R )+ (.
) ) (p) (p) (p)
Then, take a non zero series in a N k((Y],..., )) and use the

above procedure to find an appropriate linear change which gives

rise to an isomorphism §(p+1) : k((i)j —> k((_Y__(p+”)) such that,
a(p+1) @(p+1)( N

i then there exist non zero series

(P o (p”) k([Y(p+1),...,Y§p+])J), N-p < i <N, verifying
1

eyt vy w i P, 0, v PR,

U . ..
”‘(fi 1 ’ i =i i



Since a' # (1) we have a'n k = (0), hence there exists
an integer p such that (1) does not hold. Setting m=N-p, X = I(p),
o = Q(p) and fi = ffp) the conditions stated in the theorem are

trivially true.

Remark 1.1.5.- In the above theorem if gi (3 Ai denotes an irre-
ducible series which divides fi’ then

U (gi(O,...,O,Xi)) = B(gi(x],...,xi)).
Thus if a' is prime, the series fi may be chosen to be irreducible.

Let D be a complete local ring (for its m-adic topology,
where m is its maximal ideal). Suppose that k is a coefficient
field of D For any finite set {z.} i cm and indeterminates

i” 1<i <N -

Z ={Zi }1\<i <N there is a homomorphism

o : k((2)) — O

given by ¢ (Zi) =z 1 €£i < N, which is continuous for their respective

Krull topologies.

are formally independent

Definition 1.1.6.- We say that {zi}1<i$N

over k if the above homomorphism is injective.

Theorem 1.1.7.- Let X ={X_} . be indeterminates over k,
= i 1<i<N

a an ideal of k((ﬁ]) and m an integer, 0 <m <N-1, such that:

(a) gnAm:(O) ,gr\Aisé(O), m+1 £ i <N .

(b) There exist non zero series f_ € a N Ai’ m+1 < i< N,

such that

BE 0, ORI = BUF (X oo n XD

set O = k(fﬁ))/a s B, = X. + a, and denote by M (resp.

i
m) the maximal ideal of k((ﬁ)) (resp. O ). Then the following



A

statements are true:

1) If m >0,

i)
ii)
iii)

iv)

%3 1 2ic i

- w((x,

D is an

The height of a is N-m, and hence its depth is m.

g e .

are formally independent over k.

.,xm)) (xm+1,...,xN).

integral extension of k((x],..,xm)).

Particulary m:dim(D).

2) m =20 if and only if

P eiof

1) Case m >

i) The canonical homomorphism (1>:l»<((>(1

0.

given by ¢(Xi)

ii)

Conversely,

As

if

= x_  Is
i

k((x],...

k((x],...

a

is a M-primary ideal.

,Xm)J —s []

injective because g(\Am = (0).

,xm)) is a subring of D, we have

,xm)) (Xm+1""’xN) C D

f(X) € k((ﬁ)) , by using the properties of the series

f. we may apply the division algorithm (Zariski-Samuel, (29)), and

i
write

N
) - 3 f R
f(X1, ,XN) im+1ui(x1’ ,XN) i(X] XI) +
qN_] m+1 ol Im+1 |N
* E R il (X1’ ’Xm)xm+1' xN ’
IN=O ] 'NC m+1
"ma+
where U (X, X)) € k(X)) R, i (X, 5 een X DEK((X X )
! N Tm+1
and q. =U(fi(><], .,Xi)).We obtain
i 2,
q. -1 q -1 .
N m+]1 i
m+ 1 N
f(x,l,..,x :.E Ri , i (x], T xm+]...xN €
|N:O mael™ N m+ 1

k((x1,...

,xm]J (xm+1,...,xN)



iii) By using an argument as in (ii) we may conclude that

k((x1,...,xi)) = k((x1,...,xm)) (Xm+1"“’xi)’ m+1 € i <N.

Now, the W.P.T. applied to f.

i+
f|+1(x1' ’x|+1) - Vi(x1"' ’xi+1) gi+1<(x1’ ’Xi)’x|+'|
where Vi isa unit in k(()(1 ,...,Xi+]]) and gi+1 a monic polynomial

in Xi+1 with coefficients in k(()(1 ,...,Xi)J. It follows that x
is integral over k((x1,...,xi)): k((x],..,xm)J (x

9; 1 {0 doxy g

k((x],...,xmjj, m+1 €i < N.

i+1

..,x. J(since
m+1~ ’ |)

) = 0). Hence, each x. is integral over
i

iv) By (i) and (iii)
depth(a) = dim (L) = dim(k((x],...,xm)J) = m.
Therefore height(a) = N - depth(a) = N-m.

2) If m = depth(a)> 0, a isclearly not M-primary. Conversely

if m=0, we have afn k((x])) = (X;), r>0. Thus

depth(a) = gim) - dim(k([x1))) = dim(kff)(]))/(xr) =0
1

implies that a is M-primary.

Corollary 1.1.8.- Let D be an irreducible algebroid curve over k.

Then, if N ?Emb(D) there exists a prime ideal p Ck((_)i)) such
that [ = k([ﬁ))/e and if we set X, = Xi+E , the following proper-

ties hold:
DA k(X X)) # (0, 2 i <N gnk((x])) = (0).

2) There exist non zero (irreducible) series

f.o€ Enk(fx1,...,xi)), 2< i< N, such that



E(fi(X1,...,Xi)) = E(fi(O,...,O,Xi)).

3) X is formally independent over k.

4) k((x1,...,xN)) = k((x,l)) (xz,...,xN)

5) k((x1 ,...,xN)] is an integral extension of k((xljj.
Remark 1.1.9.- The five above properties will be assumed in the
sequel. Therefore we shall write D = k((x1)) (xz,...,xNj, X being
formally independent over k, and each X, integral over k((x])),

2 £i< N.

By (5) O is integral over k([XY]]’ and hence algebraic
over k((x])). Every z € m is a zero of an irreducible polynomial

over k((x1)) having its coefficients in k[[x]]],

s s-1
g((xl),Z):Z +bs_1(x1)Z +...+bo(x]).
This polynomial is actually distinguished, i.e., b (0) =0
J
fer 0 <€j < s-1. Indeed, if i is the smallest integer for which

bi(O) # 0, we may use the W.P.T., applied to the two variable
series g((Xl),Z) , in order to find a new polynomial g*((X]),Z) with
coefficients in k((x])) and degree i <s (note that i> 0 since g is

not a unit) and a unit U(X‘ »2Z) € k(()(1 ,Z)) such that
9l(x),2) = Ulx ,2). ¢*((x,),2) .

Hence g*((x1),z) = 0 which is a contradiction, because g((x1),Z)

was the polynomial with z as a zero which had the minimum degree.
i = k((X,,Z
Since  k({IX )} (Z) ‘(atix ), 2)) = (Cx;,2)) Na(x, 2D

(Zariski-Samuel, (2’9) , P. 146 ), the polynomial g((Xl),Z) is also

irreducible as two variable series.

Remark 1.1.10.- If Emb(D) €N the curve D can be embedded




in an N-space. When N=2 the curve is said to be plane. In this case,
for an embedding in a 2-space (=algebroid plane orplane if there is no
confusion),the ideal p is actually principal, p=(f(X,Y)). Furthermore

if X=X_ does not divide the leading form of f, the five properties in

1.1.8. are trivially satisfied.
Proposition 1.1.11.- D is a regular domain if and only if Emb(d)
is one.

This is a well known result in commutative algebra, but it
can also be obtained from the normalizatiaon theorem as a corollary.
Moreover, D is regular if and only if D is isomorphic as k-algebra

to a formal power series ring in one indeterminate over k.

2. THE TANGENT CONE.

In this section we shall study the tangent cone of an
irreducible algebroid curve from an algebraic and geometric view-

point.

Let I_—_I be an irreducible algebroid curve over the algebrai-

cally closed field k. Consider the graded ring

m/ i+
o='m

gr (D)
m

I
08

Definition 1.2.1.- The tangent cone to the curve D is defined to be

the affine algebraic variety Spec(grm(D)).

If a basis {Xi} 1€1 €N of m is given, the graded ring

2
gr (D) is generated as k-algebra by the classes {x.,+m } )
m i — 1<€igN

Then there is a canonical epimorphism

K(X,0ewosX g (L)
1 m

W)
X [ X.+m



10

( {xi}

. being indeterminates over k), and therefore an
1<i <N

isomorphism

gr‘m(D)=k(X1,...,XN) /s
where a is a homogeneous ideal of k(X],...,XN]. This gives rise
to an embedding of the tangent cone in kN I't is the affine algebraic
variety in kN defined by the ideal a.
Remark 1.2.2.- 1f [J - k((x)) /E is the curve defined by the ideal
p and if a is the homogeneous ideal of k(é) defining its tangent cone
as above, then a is generated by the leading forms of all the series
in p.
Proposition 1.2.3.- There is no series in p with a leading form
of type a><1m, a € k, a #£0.
’ m
Proof: Otherwise )(1 € a, m> 0, we would have ><1 € \fé . Now,
as the series f2 € p (corollary 1.1.8.) has a leading form of type

b qu + X] g(X] ,Xz), we would conclude that X_ € \/E. In the same

2

way, by replacing fi instead of f2 , 1>2, and using induction, we

would obtain X, € Va . Then,

PR i k g v oww g
dim gr (D) = dim k(xl ><NJ/Q = dim (Xl N)/(x],...,xN)=o
m
would be a contradiction, since dim grm(D) = 1 (see Zariski-Samuel,
(29), p. 235). -
¥ 1.2.4 L ((x),2) =2%+b_ (x,) 257! +b (x,)
Corollary WATE P et g x] . = + .1 ><1 +ee o' %1

b_(x1) € k[[x]]), the irreducible polynomial over k((x1)) of an element
J

z€ m. Consider g as 4 two variable series. Then, the leading form
of g is a power of a linear form and B(g((x]),Z)) =V (g((0),2)) = s.

In particular, the series fi in 1.1.8. may be taken to be g((X,‘),Xi).



1

Proof: First, we prove that if a series f(X,Y) is irreducible then its
leading form fr(X,Y) is a power of a linear form. In fact, making a
linear change of variables, f may be considered to be regular in Y of
order r and hence, by the W.P.T., we may assume that itis a polynomial
of k((X))(Y) of degree r. Then f'(X,Y‘):f(X,xY’)/Y'r is an irreducible
monic polynomial of k[[x]][Y'], and hence by the Hensel's lemma fr(l,Y')=
£1(0,Y")=(Y'+a)" with a€k, and so FX,Y)=(Y+aX)". Now, o((x,),2) is
irreducible as two variable series (see 1.1.9.) and so its leading form
is (ax +bZ)r with a,b€k. By the previous proposition b#0, and since

1
g is distinguished we have r=s. Hence the proof follows easily.

Lemma 1.2.5.- The tangent cone to a curve is a straight line.
Proof: Choose the series gi((X]),Xi) in the above corollary instead
r.
of fi(XI"“'xi)' The leading form of 9, is of type (X + a_X]) L
i i
Then, since dim k(X1,...,XN) / Ty =1 , we must have
V.a = (X2+o¢2X1,...,XN+uNX1).

It follows that the tangent cone is the straight line defined by

3. LOCAL PARAMETRIZATION.

Let D be an irreducible algebroid curve over k. Let F be
the quotient field of I:] Choose a normalized basis {x.} < (i.e.,
i 1 <i<N

a basis for which the conditions of 1.1.8. hold) of the maximal ideal
m.

Since k((x1)) (xz,...,xN) is a subfield of F containing

D = k((xl)) (xz,...,xNJ, we have:



