LNCS 4228

David E. Lightfoot
Clemens A. Szyperski (Eds.)

Modular
Programming
Languages

7th Joint Modular Languages Conference, JMLC 2006
Oxford, UK, September 2006
Proceedings

@ Springer

David E. Lightfoot Clemens A. Szyperski (Eds.)

Modular
Programming Languages

7th Joint Modular Languages Conference, JMLC 2006
Oxford, UK, September 13-15, 2006
Proceedings

@ Springer

Volume Editors

David E. Lightfoot

Oxford Brookes University
School of Technology
Department of Computing
Oxford, OX33 1HX, UK

E-mail: dlightfoot@brookes.ac.uk

Clemens A. Szyperski

One Microsoft Way

Redmond WA 98052, USA
E-mail: cszypers @microsoft.com

Library of Congress Control Number: 2006932028

CR Subject Classification (1998): D.3, D.2, D.1, D.4, F.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-40927-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-40927-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11860990 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4228

Preface

On behalf of the Steering Committee we are pleased to present the proceedings
of the 2006 Joint Modular Languages Conference (JMLC), organized by Oxford
Brookes University, Oxford, UK and held at Jesus College, Oxford. The mission
of JMLC is to explore the concepts of well-structured programming languages
and software and those of teaching good design and programming style. JMLC
2006 was the seventh in a series of successful conferences with themes including
the construction of large and distributed software systems, and software engi-
neering aspects in new and dynamic application areas.

We were fortunate to have a dedicated Program Committee comprising 41
internationally recognized researchers and industrial practitioners. We received
36 submissions and each paper was reviewed by at least three Program Com-
mittee members (four for papers with an author on the Program Committee).
The entire reviewing process was supported by the OpenConf system. In total,
23 submissions were accepted along with two invited papers and are included in
this proceedings volume.

For the successful local organization of JMLC we thank Muneera Masterson,
Ali McNiffe and Fiona Parker and other staff and student helpers of Oxford
Brookes University as well as Rosemary Frame and Jo Knighton and other staff of
Jesus College, Oxford. The proceedings you now hold were published by Springer
and we are grateful for their support. Finally, we must thank the many authors
who contributed the high-quality papers contained within these proceedings.

September 2006 David Lightfoot
Clemens Szyperski

Organization

JMLC 2006 was the seventh conference in a successful series, with past events
held in:

1987 in Bled, Slovenia;

1990 in Loughborough, UK;
1994 in Ulm, Germany;
1997 in Linz, Austria;

2000 in Ziirich, Switzerland;
2003 in Klagenfurt, Austria.

Steering Committee

Lészlé Boszorményi, University of Klagenfurt, Austria

Michael Franz, UC Irvine, USA

Jirg Gutknecht, ETH Ziirich, Switzerland

David Lightfoot, Oxford Brookes University, UK (Program Co-chair
and Local Organizer)

Hanspeter Mossenbock, University of Linz, Austria

Clemens Szyperski, Microsoft, USA (Program Co-chair)

Niklaus Wirth, ETH Ziirich emeritus, Switzerland

Program Committee

Jonathan Aldrich, CMU, USA

Pierre America, Philips Research, Netherlands

Uwe Assmann, TU Dresden, Germany

Nick Benton, Microsoft Research Cambridge, UK
Léaszl6 Boszorményi, University of Klagenfurt, Austria
Gilad Bracha, Sun Java Software, USA

Michael E. Caspersen, Aarhus University, Denmark
Craig Chambers, University of Washington, USA
Michael Franz, UC Irvine, USA

K. John Gough, Queensland UT, Australia

Dominik Gruntz, Fachhochschule Aargau, Switzerland
Jurg Gutknecht, ETH Ziirich, Switzerland

Thomas Henzinger, EPF Lausanne, Switzerland

Nigel Horspool, University of Victoria, Canada

Zoltan Horvath, Budapest University (ELTE), Hungary
Mehdi Jazayeri, TU Vienna, Austria

Helmut Ketz, Fachhochschule Reutlingen, Germany

VIII Organization

Brian Kirk, Robinson Associates, UK

Christoph Kirsch, University of Salzburg, Austria
Jens Knoop, TU Vienna, Austria

Kai Koskimies, TU Tampere, Finland

Liu Ling, University of Shanghai, China

Jochen Ludewig, University of Stuttgart, Germany
Jan Madey, University of Warsaw, Poland

Ole Lehrmann Madsen, Aarhus University, Denmark
Roland Mittermeir, University of Klagenfurt, Austria
Hanspeter Mossenbock, University of Linz, Austria
Pieter Muller, Esmertec, Switzerland

Judit Nyeky, Budapest University (ELTE), Hungary
Martin Odersky, EPF Lausanne, Switzerland

Jens Palsberg, Purdue University, USA

Frank Peschel-Gallee, Microsoft, USA

Gustav Pomberger, University of Linz, Austria
Wolfgang Pree, University of Salzburg, Austria

Paul Reed, Padded Cell Software, UK

Paul Roe, Queensland UT, Australia

Markus Schordan, TU Vienna, Austria

Brian Shearing, The Software Factory, UK

Pat Terry, Rhodes University, South Africa

Fyodor Tkachov, Institute for Nuclear Research (RAS), Russia
Wolfgang Weck, Independent Software Architect, Switzerland
Mark Woodman, Middlesex University, UK

Additional Reviewer

Christian Wimmer, University of Linz, Austria

Sponsoring Institutions

Microsoft Research
Sun Microsystems
Robinson Associates
dpunkt Verlag

Lecture Notes in Computer Science

For information about Vols. 14077

please contact your bookseller or Springer

Vol. 4228: D.E. Lightfoot, C.A. Szyperski (Eds.), Mod-
ular Programming Languages. X, 415 pages. 2006.

Vol. 4206: P. Dourish, A. Friday (Eds.), UbiComp 2006:
Ubiquitous Computing. XIX, 526 pages. 2006.

Vol. 4193: T.P. Runarsson, H.-G. Beyer, E. Burke, J.J.
Merelo-Guervés, L. D. Whitley, X. Yao (Eds.), Parallel
Problem Solving from Nature - PPSN IX. XIX, 1061
pages. 2006.

Vol.4192: B. Mohr, J.L. Traeff, J. Worringen, J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XVI, 414 pages. 2006.

Vol. 4188: P. Sojka, 1. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIV, 721 pages. 2006. (Sublibrary
LNAI).

Vol. 4186: C. Jesshope, C. Egan (Eds.), Advances in
Computer Systems Architecture. XIV, 605 pages. 2006.

Vol. 4185: R. Mizoguchi, Z. Shi, F. Giunchiglia (Eds.),
The Semantic Web— ASWC 2006. XX, 778 pages. 2006.

Vol. 4184: M. Bravetti, M. Nuiies, G. Zavattaro (Eds.),
‘Web Services and Formal Methods. X, 289 pages. 2006.

Vol. 4180: M. Kohlhase, OMDoc — An Open Markup
Format for Mathematical Documents [version 1.2]. XIX,
428 pages. 2006. (Sublibrary LNAI).

Vol. 4178: A. Corradini, H. Ehrig, U. Montanary, L.
Ribeiro, G. Rozenberg (Eds.), Graph Transformations.
XII, 473 pages. 2006.

Vol. 4176: S.K. Katsikas, J. Lopez, M. Backes, S. Gritza-
lis, B. Preneel (Eds.), Information Security. XIV, 548
pages. 2006.

Vol. 4175: P. Biicher, B.M.E. Moret (Eds.), Algorithms
in Bioinformatics. XII, 402 pages. 2006. (Sublibrary
LNBI).

Vol. 4169: H.L. Bodlaender, M.A. Langston (Eds.), Pa-
rameterized and Exact Computation. XI, 279 pages.
2006.

Vol. 4168:Y. Azar, T. Erlebach (Eds.), Algorithms — ESA
2006. X VIII, 843 pages. 2006.

Vol. 4165: W. Jonker, M. Petkovic (Eds.), Secure, Data
Management. X, 185 pages. 2006.

Vol. 4163: H. Bersini, J. Carneiro (Eds.), Artificial Im-
mune Systems. XII, 460 pages. 2006.

Vol. 4162: R. Krdlovi¢, P. Urzyczyn (Eds.), Mathemat-
ical Foundations of Computer Science 2006. XV, 814
pages. 2006.

Vol. 4159: J. Ma, H. Jin, L.T. Yang, J.J.-P. Tsai (Eds.),
Ubiquitous Intelligence and Computing. XXII, 1190
pages. 2006.

Vol.4158: L.T. Yang, H. Jin,J. Ma, T. Ungerer (Eds.), Au-
tonomic and Trusted Computing. X1V, 613 pages. 2006.

Vol.4156: S. Amer-Yahia, Z. Bellahsene, E. Hunt, R. Un-
land, J.X. Yu (Eds.), Database and XML Technologies.
1X, 123 pages. 2006.

Vol. 4155: O. Stock, M. Schaerf (Eds.), Reasoning, Ac-
tion and Interaction in Al Theories and Systems. XVIII,
343 pages. 2006. (Sublibrary LNAI).

Vol.4153:N.Zheng, X.Jiang, X. Lan (Eds.), Advances in
Machine Vision, Image Processing, and Pattern Analysis.
XIII, 506 pages. 2006.

Vol. 4152: Y. Manolopoulos, J. Pokorny, T. Sellis (Eds.),
Advances in Databases and Information Systems. XV,
448 pages. 2006.

Vol. 4151: A. Iglesias, N. Takayama (Eds.), Mathemati-
cal Software - ICMS 2006. XVII, 452 pages. 2006.

Vol. 4150: M. Dorigo, L.M. Gambardella, M. Birattari,
A. Martinoli, R. Poli, T. Stiitzle (Eds.), Ant Colony Opti-
mization and Swarm Intelligence. X VI, 526 pages. 2006.

Vol. 4149: M. Klusch, M. Rovatsos, T.R. Payne (Eds.),
Cooperative Information Agents X. XII, 477 pages.
2006. (Sublibrary LNAI).

Vol. 4148: J. Vounckx, N. Azemard, P. Maurine (Eds.),
Integrated Circuit and System Design. XVI, 677 pages.
2006.

Vol. 4146: J.C. Rajapakse, L. Wong, R. Acharya (Eds.),
Pattern Recognition in Bioinformatics. XIV, 186 pages.
2006. (Sublibrary LNBI).

Vol. 4144: T. Ball, R.B. Jones (Eds.), Computer Aided
Verification. XV, 564 pages. 2006.

Vol. 4139: T. Salakoski, F. Ginter, S. Pyysalo, T.
Pahikkala, Advances in Natural Language Processing.
XVI, 771 pages. 2006. (Sublibrary LNAI).

Vol. 4138: X. Cheng, W. Li, T. Znati (Eds.), Wireless
Algorithms, Systems, and Applications. X VI, 709 pages.
2006.

Vol.4137: C. Baier, H. Hermanns (Eds.), CONCUR 2006
— Concurrency Theory. XIII, 525 pages. 2006.

Vol. 4136: R.A. Schmidt (Ed.), Relations and Kleene
Algebra in Computer Science. XI, 433 pages. 2006.

Vol. 4135: C.S. Calude, M.J. Dinneen, G. Paun, G.
Rozenberg, S. Stepney (Eds.), Unconventional Compu-
tation. X, 267 pages. 2006.

Vol. 4134: K. Yi (Ed.), Static Analysis. XIII, 443 pages.
2006.

Vol. 4133: J. Gratch, M. Young, R. Aylett, D. Ballin,
P. Olivier (Eds.), Intelligent Virtual Agents. XIV, 472
pages. 2006. (Sublibrary LNAI).

Vol. 4132: S. Kollias, A. Stafylopatis, W. Duch, E. Oja
(Eds.), Artificial Neural Networks — ICANN 2006, Part
IT. XXXIV, 1028 pages. 2006.

Vol. 4131: S. Kollias, A. Stafylopatis, W. Duch, E. Oja
(Eds.), Artificial Neural Networks — ICANN 2006, Part
L. XXXIV, 1008 pages. 2006.

Vol. 4130: U. Furbach, N. Shankar (Eds.), Automated
Reasoning. XV, 680 pages. 2006. (Sublibrary LNAI).
Vol. 4129: D. McGookin, S. Brewster (Eds.), Haptic and
Audio Interaction Design. XII, 167 pages. 2006.

Vol. 4128: W.E. Nagel, W.V. Walter, W. Lehner (Eds.).
Euro-Par 2006 Parallel Processing. XXXIII, 1221 pages.
2006.

Vol. 4127: E. Damiani, P. Liu (Eds.), Data and Applica-
tions Security XX. X, 319 pages. 2006.

Vol. 4126: P. Barahona, F. Bry, E. Franconi, N. Henze,
U. Sattler, Reasoning Web. X, 269 pages. 2006.

Vol. 4124: H. de Meer, J.P. G. Sterbenz (Eds.), Self-
Organizing Systems. XIV, 261 pages. 2006.

Vol. 4121: A. Biere, C.P. Gomes (Eds.), Theory and Ap-
plications of Satisfiability Testing - SAT 2006. XII, 438
pages. 2006.

Vol. 4119: C. Dony, J.L. Knudsen, A. Romanovsky, A.
Tripathi (Eds.), Advanced Topics in Exception Handling
Components. X, 302 pages. 2006.

Vol. 4117: C. Dwork (Ed.), Advances in Cryptology -
CRYPTO 2006. XIII, 621 pages. 2006.

Vol. 4116: R. De Prisco, M. Yung (Eds.), Security and
Cryptography for Networks. XI, 366 pages. 2006.

Vol. 4115: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-

putational Intelligence and Bioinformatics, Part I11. XXI,
803 pages. 2006. (Sublibrary LNBI).

Vol. 4114: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Com-

putational Intelligence, Part II. XXVII, 1337 pages.
2006. (Sublibrary LNAI).

Vol. 4113: D.-S. Huang, K. Li, G.W. Irwin (Eds.), Intel-
ligent Computing, Part I. XXVII, 1331 pages. 2006.
Vol. 4112: D.Z. Chen, D. T. Lee (Eds.), Computing and
Combinatorics. XIV, 528 pages. 2006.

Vol. 4111: ES. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 447 pages. 2006.

Vol. 4110: J. Diaz, K. Jansen, J.D.P. Rolim, U. Zwick
(Eds.), Approximation, Randomization, and Combina-
torial Optimization. XII, 522 pages. 2006.

Vol. 4109: D.-Y. Yeung, J.T. Kwok, A. Fred, E. Roli, D.
de Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXI, 939 pages. 2006.

Vol. 4108: .M. Borwein, W.M. Farmer (Eds.), Mathe-
matical Knowledge Management. VIII, 295 pages. 2006.
(Sublibrary LNAI).

Vol. 4106: T.R. Roth-Berghofer, M.H. Goker, H. A.
Giivenir (Eds.), Advances in Case-Based Reasoning.
X1V, 566 pages. 2006. (Sublibrary LNAI).

Vol. 4105: B. Gunsel, A.K. Jain, A. M. Tekalp, B. Sankur
(Eds.), Multimedia, Content Representation, Classifica-
tion and Security. XIX, 804 pages. 2006.

Vol. 4104: T. Kunz, S.S. Ravi (Eds.), Ad-Hoc, Mobile,
and Wireless Networks. XII, 474 pages. 2006.

Vol. 4103: J. Eder, S. Dustdar (Eds.), Business Process
Management Workshops. X1, 508 pages. 2006.

Vol. 4102: S. Dustdar, J.L. Fiadeiro, A. Sheth (Eds.),
Business Process Management. XV, 486 pages. 2006.

Vol. 4099: Q. Yang, G. Webb (Eds.), PRICAI 2006:
Trends in Artificial Intelligence. XXVIII, 1263 pages.
2006. (Sublibrary LNAI).

Vol. 4098: F. Pfenning (Ed.), Term Rewriting and Appli-
cations. XIII, 415 pages. 2006. s

Vol. 4097: X. Zhou, O. Sokolsky, L. Yan, E.-S. Jung, Z.
Shao, Y. Mu, D.C. Lee, D. Kim, Y.-S. Jeong, C.-Z. Xu
(Eds.), Emerging Directions in Embedded and Ubiqui-
tous Computing. XXVII, 1034 pages. 2006.

Vol. 4096: E. Sha, S.-K. Han, C.-Z. Xu, M.H. Kim, L.T.
Yang, B. Xiao (Eds.), Embedded and Ubiquitous Com-
puting. XXIV, 1170 pages. 2006.

Vol. 4095: S. Nolfi, G. Baldassare, R. Calabretta, D.
Marocco, D. Parisi, J.C. T. Hallam, O. Miglino, J.-A.
Meyer (Eds.), From Animals to Animats 9. XV, 869
pages. 2006. (Sublibrary LNAI).

Vol. 4094: O. H. Ibarra, H.-C. Yen (Eds.), Implementa-
tion and Application of Automata. XIII, 291 pages. 2006.

Vol. 4093: X. Li, O.R. Zaiane, Z. Li (Eds.), Advanced
Data Mining and Applications. XXI, 1110 pages. 2006.
(Sublibrary LNAI).

Vol. 4092: J. Lang, F. Lin, J. Wang (Eds.), Knowledge
Science, Engineering and Management. XV, 664 pages.
2006. (Sublibrary LNAI).

Vol. 4091: G.-Z. Yang, T. Jiang, D. Shen, L. Gu, J. Yang
(Eds.), Medical Imaging and Augmented Reality. XIII,
399 pages. 2006.

Vol. 4090: S. Spaccapietra, K. Aberer, P. Cudré-Mauroux

(Eds.), Journal on Data Semantics V1. XI, 211 pages.
2006.

Vol. 4089: W. Lowe. M. Siidholt (Eds.), Software Com-
position. X, 339 pages. 2006.

Vol. 4088: Z.-Z. Shi. R. Sadananda (Eds.), Agent Com-
puting and Multi-Agent Systems. XVII, 827 pages.
2006. (Sublibrary LNAI).

Vol. 4087: F. Schwenker, S. Marinai (Eds.), Artificial
Neural Networks in Pattern Recognition. IX, 299 pages.
2006. (Sublibrary LNAI).

Vol. 4085: J. Misra, T. Nipkow, E. Sekerinski (Eds.), FM
2006: Formal Methods. XV, 620 pages. 2006.

Vol. 4084: M.A. Wimmer, H.J. Scholl. A. Gronlund,
K.V. Andersen (Eds.), Electronic Government. XV, 353
pages. 2006.

Vol. 4083: S. Fischer-Hiibner, S. Furnell, C. Lambri-
noudakis (Eds.), Trust and Privacy in Digital Business.
XIII, 243 pages. 2006.

Vol. 4082: K. Bauknecht, B. Proll, H. Werthner (Eds.),
E-Commerce and Web Technologies. XIII, 243 pages.
2006.

Vol. 4081: A. M. Tjoa, J. Trujillo (Eds.), Data Warehous-
ing and Knowledge Discovery. XVII, 578 pages. 2006.
Vol. 4080: S. Bressan, J. Kiing, R. Wagner (Eds.),
Database and Expert Systems Applications. XXI, 959
pages. 2006.

Vol. 4079: S. Etalle, M. Truszczynski (Eds.), Logic Pro-
gramming. X1V, 474 pages. 2006.

Table of Contents

Separating Concerns with Domain Specific Languages 1
Steve Cook
Event-Based Programming Without Inversion of Control 4

Philipp Haller, Martin Odersky

Programming Language Concepts for Multimedia Application
Development .« s s ouissamnimns cosmasasmnsss@aisisnssspumimasny smsns 23
Oliver Lampl, Elmar Stellnberger, Ldszlo Boszorményi

Implicit and Dynamic Parameters in C++ 37
Christian Heinlein

Reconciling Virtual Classes with Genericity 57
Erik Ernst

Oberon Script: A Lightweight Compiler and Runtime System
for the Webo e 73
Ralph Sommerer

Efficient Layer Activation for Switching Context-Dependent Behavior.... 84
Pascal Costanza, Robert Hirschfeld, Wolfgang De Meuter

Object-Oriented Language Processing 104
Pietu Pohjalainen

A Framework for Modular Linking in OO Languages 116
Sean McDirmid, Wilson C. Hsieh, Matthew Flatt

Flexible Type-Safe Linking of Components for Java-Like Languages 136
Davide Ancona, Giovanni Lagorio, Elena Zucca

Towards a Formal Semantics for Aspect] Weaving 155
Nadia Belblidia, Mourad Debbabi

Symbolic Analysis of Imperative Programming Languages.............. 172
Bernd Burgstaller, Bernhard Scholz, Johann Blieberger

Array-Structured Object Types for Mathematical Programming 195
Felix Friedrich, Jiirg Gutknecht

X Table of Contents

MetaModelica: A Unified Equation-Based Semantical and Mathematical
Modeling Language ... :s:swiwssmswssmons smiss sasss sasmesasnnsmsss 211
Adrian Pop, Peter Fritzson

A Component Language for Structured Parallel Programming 230
Luc Blaser

Internal and External Token-Based Synchronization in
Object-Oriented Languagesouiuiiiininnnenennnn.. 251
Franz Puntigam

A New Component-Oriented Programming Language with the
First-Class Connectoro.iniitinie e, 271
Bo Chen, ZhouJun Li, HuoWang Chen

A Component Plug-In Architecture for the .NET Platform 287
Reinhard Wolfinger, Deepak Dhungana, Herbert Prahofer,
Hanspeter Mdéssenbock

Improve Component-Based Programs with Connectors................. 306
Joachim H. Frohlich, Manuel Schwarzinger

Automatic Object Colocation Based on Read Barriers 326
Christian Wimmer, Hanspeter Méssenbéck

Nearly Optimal Register Allocation with PBQP 346
Lang Hames, Bernhard Scholz

Fast Profile-Based Partial Redundancy Elimination 362
R. Nigel Horspool, David J. Pereira, Bernhard Scholz

The Dining Philosophers Problem Revisited 377
Jirg Gutknecht

A Mobile Agent Service-Oriented Scripting Language Encoded
N, & Process CalCUlUs « scu: swemasmzssvamssssmssssnsssssssssisssmoas 383

Hervé Paulino, Luis Lopes

A Case Study in Concurrent Programming with Active Objects......... 403
Ulrike Glavitsch, Thomas M. Frey

AVEHOF INAERC ; c5 s visms smoms e minssms ds i Bs@Ri@s dmiRidasas ihsne amibe 415

Separating Concerns with Domain Specific Languages

Steve Cook

Microsoft UK Ltd, Cambridge
steve.cook@microsoft.com

Abstract. I'll talk about the separation of concerns in the development of large
distributed enterprise systems, how to manage it using domain specific
languages, and how to build these languages. This brief note outlines some of
the topics I'll cover.

1 Separation of Concerns

Most developments in programming language design are intended to improve the
ability of the programmer to separate the expression of different concerns. This has
progressively led to the development of language features such as procedures, abstract
data types, objects, polymorphic type systems, aspects, and so on.

We’re now moving into an era when the normal case of software development is
distributed and heterogeneous, with the internet playing a pivotal role. It’s simply not
practical today to use a single programming language to create all aspects of a large
and complex computing system. Different technologies are used to implement user-
interfaces, business subsystems, middleware, databases, workflow systems, sensors,
etc. Enterprise programming stacks include as first-class participants a variety of
inter-related programming and scripting languages, databases, metadata and
configuration files. Most programming projects involve interoperating with what is
already there, which requires interfacing to existing technology stacks.

In such a world, concerns such as the structure and organization of business data
and processes inherently span multiple technologies. A given business concept will
show up in the user interface, in the formats used to communicate between
components, in the interfaces offered from one component to another, in the schemas
for databases where business data is stored, and in the programming logic for
manipulating all of the above. Even the simplest change, such as changing the name
of the business concept, impacts all of these pieces. Such concerns cannot possibly be
effectively separated by improving programming language design. How then can we
approach this problem?

2 Development Using Domain Specific Languages
A promising approach has been described variously as “Language-Oriented
Programming” [1], “Language Workbenches” [2], “Generative Programming” [3] and

“Model Driven Engineering” [4]. All of these phrases essentially describe the same

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 1 -3, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 S. Cook

pattern: given a class of problems, design a special-purpose language — a Domain
Specific Language or DSL - to solve it.

A simple (and old) example of this pattern is the language of regular expressions.
For example, using the .Net class System.Text.RegularExpression.Regex, the regular
expression “(?<user>[*@]+)@(?<host>.+)” applied to a string of characters will find
email addresses in it, and for each address found, appropriately extract the user and
host variables. Programming such a procedure directly in a general-purpose language
is a significantly larger and more error-prone task.

In developing complex enterprise systems, it is increasingly the case that graphical
languages can be used to express certain concerns most effectively. Business
workflows, business data, and system, application and data centre configuration are
obvious candidates for graphical representation. Also textual languages, while
effective for inputting large programs, may not be the most effective medium for
displaying, analyzing and interpreting these programs.

Putting these ingredients together provides the motivation for an emerging class of
graphical language-processing tools, which includes the DSL Tools from Microsoft
[5], the Generic Modeling Environment (GME) from Vanderbilt University [6], and
commercial examples from MetaCase, Xactium and others. These tools enable the
language author to design and implement the abstract and concrete syntax for a DSL,
together with the ancillaries needed to integrate the language into a development
process.

Of course it is not sufficient simply to design what a DSL looks like; it is also
necessary to give its expressions meaning, which in practical terms means to generate
executable artifacts from it: these will most likely be programs in more general-
purpose languages, together with configuration files, scripts and metadata, that can be
deployed together to implement the intention of the developer.

As soon as generation is introduced into the development process, there is the
possibility of developers changing the generated artifacts. Uncontrolled, this will
break the process: the source form of the DSL will become out of date and useless.
Alleviating this issue is one of the main challenges of making DSLs successful. Not
all artifacts can be generated from DSLs, so it is essential to be able to interface
generated artifacts with hand-coded ones: various language techniques such as partial
classes [7] can enable this.

3 Software Factories

A DSL can provide a means to simplify the development of one area of concern. But
the development of large distributed applications involves the integration of multiple
areas of concern, with multiple stakeholders manipulating the system via multiple
different viewpoints.

Managing the complexity of such a development involves delivering appropriate
languages, tools and guidance to individual participants in the process at the right
place and time. Enabling this is the province of Software Factories [8], an approach

Separating Concerns with Domain Specific Languages 3

to software development that focuses on the explicit identification of viewpoints in
the development process, the definition of DSLs, tools and guidance to support these
viewpoints, and the delivery of these capabilities to individuals during the enactment
of the process.

References

W

. Dimitriev, S. Language-Oriented Programming: The Next Programming Paradigm,

http://www.onboard.jetbrains.com/is 1/articles/04/10/1op/
Fowler, M. Language Workbenches: The Killer App for Domain Specific Languages?
http://martinfowler.com/articles/languageWorkbench.html

. Czarnecki, K. and Eisenecker, U.W. Generative Programming — Methods, Tools and

Applications. Addison-Wesley (2000).

Bézivin J., Jouault F, and Valduriez P. On the Need for Megamodels. Proceedings of the
OOPSLA/GPCE: Best Practices for Model-Driven Software Development workshop, 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (2004).

DSL Tools Workshop. http://msdn.microsoft.com/vstudio/DSLTools/

Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J. and Volgyesi, P. The Generic Modeling Environment.
Proceedings of WISP2001, May, 2001.
http://www.isis.vanderbilt.edu/Projects/gme/GME20000verview.pdf

C# programming guide, http://msdn2.microsoft.com/en-us/library/wa80x488.aspx
Greenfield, J., Short, K., Cook, S., Kent, S. Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. Wiley (2004).

Event-Based Programming Without Inversion of
Control

Philipp Haller and Martin Odersky

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

1 Introduction

Concurrent programming is indispensable. On the one hand, distributed and
mobile environments naturally involve concurrency. On the other hand, there
is a general trend towards multi-core processors that are capable of running
multiple threads in parallel.

With actors there exists a computation model which is especially suited for
concurrent and distributed computations [16,1]. Actors are basically concur-
rent processes which communicate through asynchronous message passing. When
combined with pattern matching for messages, actor-based process models have
been proven to be very effective, as the success of Erlang documents [3,25].

Erlang [4] is a dynamically typed functional programming language designed
for programming real-time control systems. Examples of such systems are tele-
phone exchanges, network simulators and distributed resource controllers. In
these systems, large numbers of concurrent processes can be active simultane-
ously. Moreover, it is generally difficult to predict the number of processes and
their memory requirements as they vary with time.

For the implementation of these processes, operating system threads and
threads of virtual machines, such as the Java Virtual Machine [22], are usually
too heavyweight. The main reasons are: (1) Over-provisioning of stacks leads
to quick exhaustion of virtual address space and (2) locking mechanisms often
lack suitable contention managers [12]|. Therefore, Erlang implements concurrent
processes by its own runtime system and not by the underlying operating system
(5]

Actor abstractions as lightweight as Erlang’s processes have been unavailable
on popular virtual machines so far. At the same time, standard virtual machines
are becoming an increasingly important platform for exactly the same domain of
applications in which Erlang—because of its process model-has been so successful:
Real-time control systems [23,27].

Another domain where virtual machines are expected to become ubiquitous
are applications running on mobile devices, such as cellular phones or personal
digital assistants [20]. Usually, these devices are exposed to severe resource con-
straints. On such devices, only a few hundred kilobytes of memory is available
to a virtual machine and applications.

This has important consequences: (1) A virtual machine for mobile devices
usually offers only a restricted subset of the services of a common virtual machine

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 4-22, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Event-Based Programming Without Inversion of Control 5

for desktop or server computers. For example, the KVM! has no support for re-
flection (introspection) and serialization. (2) Programming abstractions used by
applications have to be very lightweight to be useful. Again, thread-based con-
currency abstractions are too heavyweight. Furthermore, programming models
have to cope with the restricted set of services a mobile virtual machine provides.

A common alternative to programming with threads are event-driven pro-
gramming models. Programming in explicitly event-driven models is very diffi-
cult [21].

Most programming models support event-driven programming only through
inversion of control. Instead of calling blocking operations (e.g. for obtaining user
input), a program merely registers its interest to be resumed on certain events
(e.g. an event signaling a pressed button, or changed contents of a text field).
In the process, event handlers are installed in the execution environment which
are called when certain events occur. The program never calls these event han-
dlers itself. Instead, the execution environment dispatches events to the installed
handlers. Thus, control over the execution of program logic is “inverted”.

Virtually all approaches based on inversion of control suffer from the following
two problems: First, the interactive logic of a program is fragmented across
multiple event handlers (or classes, as in the state design pattern [13]). Second,
control flow among handlers is expressed implicitly through manipulation of
shared state [10].

To obtain very lightweight abstractions without inversion of control, we make
actors thread-less. We introduce event-based actors as an implementation tech-
nique for lightweight actor abstractions on non-cooperative virtual machines such
as the JVM. Non-cooperative means that the virtual machine provides no means
to explicitly manage the execution state of a program.

The central idea is as follows: An actor that waits in a receive statement is not
represented by a blocked thread but by a closure that captures the rest of the
actor’s computation. The closure is executed once a message is sent to the actor
that matches one of the message patterns specified in the receive. The execution
of the closure is “piggy-backed” on the thread of the sender. If the receiving
closure terminates, control is returned to the sender as if a procedure returns. If
the receiving closure blocks in a second receive, control is returned to the sender
by throwing a special exception that unwinds the receiver’s call stack.

A necessary condition for the scheme to work is that receivers never return
normally to their enclosing actor. In other words, no code in an actor can de-
pend on the termination or the result of a receive block. We can express this
non-returning property at compile time through Scala’s type system. This is not
a severe restriction in practice, as programs can always be organized in a way so
that the “rest of the computation” of an actor is executed from within a receive.
To the best of our knowledge, event-based actors are the first to (1) allow reactive
behavior to be expressed without inversion of control, and (2) support arbitrary
blocking operations in reactions, at the same time. Our actor library outper-
forms other state-of-the-art actor languages with respect to message passing

! See http://java.sun.com/products/cldc/.

6 P. Haller and M. Odersky

speed and memory consumption by several orders of magnitude. Our implemen-
tation is able to make use of multi-processors and multi-core processors because
reactions can be executed simultaneously on multiple processors. By extending
our event-based actors with a portable runtime system, we show how the essence
of distributed Erlang [31] can be implemented in Scala. Our library supports vir-
tually all primitives and built-in-functions which are introduced in the Erlang
book [4]. The portability of our runtime system is established by two working
prototypes based on TCP and the JXTA? peer-to-peer framework, respectively.

All this has been achieved without extending or changing the programming
language. The event-based actor library is thus a good demonstrator of Scala’s
abstraction capabilities. Beginning with the upcoming release 2.1.7, it is part of
the Scala standard distribution3.

Other Related Work. Actalk [8] implements actors as a library for Smalltalk-80
by extending a minimal kernel of pure Smalltalk objects. Their implementa-
tion is not event-based and Smalltalk-80 does not support parallel execution of
concurrent actors on multi-processors (or multi-core processors).

Actra [29] extends the Smalltalk/V virtual machine with an object-based
real-time kernel which provides lightweight processes. In contrast, we implement
lightweight actors on unmodified virtual machines.

Chrysanthakopoulos and Singh [11] discuss the design and implementation
of a channel-based asynchronous messaging library. Channels can be viewed
as special state-less actors which have to be instantiated to indicate the types
of messages they can receive. Instead of using heavyweight operating system
threads they develop their own scheduler to support continuation passing style
(CPS) code. Using CLU-style iterators blocking-style code is CPS-transformed
by the C# compiler.

SALSA (Simple Actor Language, System and Architecture) [30] extends Java
with concurrency constructs that directly support the notion of actors. A pre-
processor translates SALSA programs into Java source code which in turn is
linked to a custom-built actor library. As SALSA implements actors on the
JVM, it is somewhat closer related to our work than Smalltalk-based actors or
channels. Moreover, performance results have been published which enables us
to compare our system with SALSA, using ports of existing benchmarks.

Timber is an object-oriented and functional programming language designed
for real-time embedded systems [6]. It offers message passing primitives for both
synchronous and asynchronous communication between concurrent reactive ob-
jects. In contrast to event-based actors, reactive objects cannot call operations
that might block indefinitely. Instead, they install call-back methods in the com-
puting environment which executes these operations on behalf of them.

Frugal objects [14] (FROBs) are distributed reactive objects that commu-
nicate through typed events. FROBs are basically actors with an event-based
computation model, just as our event-based actors. The goals of FROBs and

2 See http://www.jxta.org)/.
3 Available from http://scala.epfl.ch/.

