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Preface

On behalf of the Steering Committee we are pleased to present the proceedings
of the 2006 Joint Modular Languages Conference (JMLC), organized by Oxford
Brookes University, Oxford, UK and held at Jesus College, Oxford. The mission
of JMLC is to explore the concepts of well-structured programming languages
and software and those of teaching good design and programming style. JMLC
2006 was the seventh in a series of successful conferences with themes including
the construction of large and distributed software systems, and software engi-
neering aspects in new and dynamic application areas.

We were fortunate to have a dedicated Program Committee comprising 41
internationally recognized researchers and industrial practitioners. We received
36 submissions and each paper was reviewed by at least three Program Com-
mittee members (four for papers with an author on the Program Committee).
The entire reviewing process was supported by the OpenConf system. In total,
23 submissions were accepted along with two invited papers and are included in
this proceedings volume.

For the successful local organization of JMLC we thank Muneera Masterson,
Ali McNiffe and Fiona Parker and other staff and student helpers of Oxford
Brookes University as well as Rosemary Frame and Jo Knighton and other staff of
Jesus College, Oxford. The proceedings you now hold were published by Springer
and we are grateful for their support. Finally, we must thank the many authors
who contributed the high-quality papers contained within these proceedings.

September 2006 David Lightfoot
Clemens Szyperski
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Separating Concerns with Domain Specific Languages

Steve Cook

Microsoft UK Ltd, Cambridge
steve.cook@microsoft.com

Abstract. I'll talk about the separation of concerns in the development of large
distributed enterprise systems, how to manage it using domain specific
languages, and how to build these languages. This brief note outlines some of
the topics I'll cover.

1 Separation of Concerns

Most developments in programming language design are intended to improve the
ability of the programmer to separate the expression of different concerns. This has
progressively led to the development of language features such as procedures, abstract
data types, objects, polymorphic type systems, aspects, and so on.

We’re now moving into an era when the normal case of software development is
distributed and heterogeneous, with the internet playing a pivotal role. It’s simply not
practical today to use a single programming language to create all aspects of a large
and complex computing system. Different technologies are used to implement user-
interfaces, business subsystems, middleware, databases, workflow systems, sensors,
etc. Enterprise programming stacks include as first-class participants a variety of
inter-related programming and scripting languages, databases, metadata and
configuration files. Most programming projects involve interoperating with what is
already there, which requires interfacing to existing technology stacks.

In such a world, concerns such as the structure and organization of business data
and processes inherently span multiple technologies. A given business concept will
show up in the user interface, in the formats used to communicate between
components, in the interfaces offered from one component to another, in the schemas
for databases where business data is stored, and in the programming logic for
manipulating all of the above. Even the simplest change, such as changing the name
of the business concept, impacts all of these pieces. Such concerns cannot possibly be
effectively separated by improving programming language design. How then can we
approach this problem?

2 Development Using Domain Specific Languages
A promising approach has been described variously as “Language-Oriented
Programming” [1], “Language Workbenches” [2], “Generative Programming” [3] and

“Model Driven Engineering” [4]. All of these phrases essentially describe the same

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 1 -3, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 S. Cook

pattern: given a class of problems, design a special-purpose language — a Domain
Specific Language or DSL - to solve it.

A simple (and old) example of this pattern is the language of regular expressions.
For example, using the .Net class System.Text.RegularExpression.Regex, the regular
expression “(?<user>[*@]+)@(?<host>.+)” applied to a string of characters will find
email addresses in it, and for each address found, appropriately extract the user and
host variables. Programming such a procedure directly in a general-purpose language
is a significantly larger and more error-prone task.

In developing complex enterprise systems, it is increasingly the case that graphical
languages can be used to express certain concerns most effectively. Business
workflows, business data, and system, application and data centre configuration are
obvious candidates for graphical representation. Also textual languages, while
effective for inputting large programs, may not be the most effective medium for
displaying, analyzing and interpreting these programs.

Putting these ingredients together provides the motivation for an emerging class of
graphical language-processing tools, which includes the DSL Tools from Microsoft
[5], the Generic Modeling Environment (GME) from Vanderbilt University [6], and
commercial examples from MetaCase, Xactium and others. These tools enable the
language author to design and implement the abstract and concrete syntax for a DSL,
together with the ancillaries needed to integrate the language into a development
process.

Of course it is not sufficient simply to design what a DSL looks like; it is also
necessary to give its expressions meaning, which in practical terms means to generate
executable artifacts from it: these will most likely be programs in more general-
purpose languages, together with configuration files, scripts and metadata, that can be
deployed together to implement the intention of the developer.

As soon as generation is introduced into the development process, there is the
possibility of developers changing the generated artifacts. Uncontrolled, this will
break the process: the source form of the DSL will become out of date and useless.
Alleviating this issue is one of the main challenges of making DSLs successful. Not
all artifacts can be generated from DSLs, so it is essential to be able to interface
generated artifacts with hand-coded ones: various language techniques such as partial
classes [7] can enable this.

3 Software Factories

A DSL can provide a means to simplify the development of one area of concern. But
the development of large distributed applications involves the integration of multiple
areas of concern, with multiple stakeholders manipulating the system via multiple
different viewpoints.

Managing the complexity of such a development involves delivering appropriate
languages, tools and guidance to individual participants in the process at the right
place and time. Enabling this is the province of Software Factories [8], an approach
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to software development that focuses on the explicit identification of viewpoints in
the development process, the definition of DSLs, tools and guidance to support these
viewpoints, and the delivery of these capabilities to individuals during the enactment
of the process.
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Event-Based Programming Without Inversion of
Control
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1 Introduction

Concurrent programming is indispensable. On the one hand, distributed and
mobile environments naturally involve concurrency. On the other hand, there
is a general trend towards multi-core processors that are capable of running
multiple threads in parallel.

With actors there exists a computation model which is especially suited for
concurrent and distributed computations [16,1]. Actors are basically concur-
rent processes which communicate through asynchronous message passing. When
combined with pattern matching for messages, actor-based process models have
been proven to be very effective, as the success of Erlang documents [3,25].

Erlang [4] is a dynamically typed functional programming language designed
for programming real-time control systems. Examples of such systems are tele-
phone exchanges, network simulators and distributed resource controllers. In
these systems, large numbers of concurrent processes can be active simultane-
ously. Moreover, it is generally difficult to predict the number of processes and
their memory requirements as they vary with time.

For the implementation of these processes, operating system threads and
threads of virtual machines, such as the Java Virtual Machine [22], are usually
too heavyweight. The main reasons are: (1) Over-provisioning of stacks leads
to quick exhaustion of virtual address space and (2) locking mechanisms often
lack suitable contention managers [12]|. Therefore, Erlang implements concurrent
processes by its own runtime system and not by the underlying operating system
(5]

Actor abstractions as lightweight as Erlang’s processes have been unavailable
on popular virtual machines so far. At the same time, standard virtual machines
are becoming an increasingly important platform for exactly the same domain of
applications in which Erlang—because of its process model-has been so successful:
Real-time control systems [23,27].

Another domain where virtual machines are expected to become ubiquitous
are applications running on mobile devices, such as cellular phones or personal
digital assistants [20]. Usually, these devices are exposed to severe resource con-
straints. On such devices, only a few hundred kilobytes of memory is available
to a virtual machine and applications.

This has important consequences: (1) A virtual machine for mobile devices
usually offers only a restricted subset of the services of a common virtual machine

D. Lightfoot and C. Szyperski (Eds.): JMLC 2006, LNCS 4228, pp. 4-22, 2006.
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for desktop or server computers. For example, the KVM! has no support for re-
flection (introspection) and serialization. (2) Programming abstractions used by
applications have to be very lightweight to be useful. Again, thread-based con-
currency abstractions are too heavyweight. Furthermore, programming models
have to cope with the restricted set of services a mobile virtual machine provides.

A common alternative to programming with threads are event-driven pro-
gramming models. Programming in explicitly event-driven models is very diffi-
cult [21].

Most programming models support event-driven programming only through
inversion of control. Instead of calling blocking operations (e.g. for obtaining user
input), a program merely registers its interest to be resumed on certain events
(e.g. an event signaling a pressed button, or changed contents of a text field).
In the process, event handlers are installed in the execution environment which
are called when certain events occur. The program never calls these event han-
dlers itself. Instead, the execution environment dispatches events to the installed
handlers. Thus, control over the execution of program logic is “inverted”.

Virtually all approaches based on inversion of control suffer from the following
two problems: First, the interactive logic of a program is fragmented across
multiple event handlers (or classes, as in the state design pattern [13]). Second,
control flow among handlers is expressed implicitly through manipulation of
shared state [10].

To obtain very lightweight abstractions without inversion of control, we make
actors thread-less. We introduce event-based actors as an implementation tech-
nique for lightweight actor abstractions on non-cooperative virtual machines such
as the JVM. Non-cooperative means that the virtual machine provides no means
to explicitly manage the execution state of a program.

The central idea is as follows: An actor that waits in a receive statement is not
represented by a blocked thread but by a closure that captures the rest of the
actor’s computation. The closure is executed once a message is sent to the actor
that matches one of the message patterns specified in the receive. The execution
of the closure is “piggy-backed” on the thread of the sender. If the receiving
closure terminates, control is returned to the sender as if a procedure returns. If
the receiving closure blocks in a second receive, control is returned to the sender
by throwing a special exception that unwinds the receiver’s call stack.

A necessary condition for the scheme to work is that receivers never return
normally to their enclosing actor. In other words, no code in an actor can de-
pend on the termination or the result of a receive block. We can express this
non-returning property at compile time through Scala’s type system. This is not
a severe restriction in practice, as programs can always be organized in a way so
that the “rest of the computation” of an actor is executed from within a receive.
To the best of our knowledge, event-based actors are the first to (1) allow reactive
behavior to be expressed without inversion of control, and (2) support arbitrary
blocking operations in reactions, at the same time. Our actor library outper-
forms other state-of-the-art actor languages with respect to message passing

! See http://java.sun.com/products/cldc/.
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speed and memory consumption by several orders of magnitude. Our implemen-
tation is able to make use of multi-processors and multi-core processors because
reactions can be executed simultaneously on multiple processors. By extending
our event-based actors with a portable runtime system, we show how the essence
of distributed Erlang [31] can be implemented in Scala. Our library supports vir-
tually all primitives and built-in-functions which are introduced in the Erlang
book [4]. The portability of our runtime system is established by two working
prototypes based on TCP and the JXTA? peer-to-peer framework, respectively.

All this has been achieved without extending or changing the programming
language. The event-based actor library is thus a good demonstrator of Scala’s
abstraction capabilities. Beginning with the upcoming release 2.1.7, it is part of
the Scala standard distribution3.

Other Related Work. Actalk [8] implements actors as a library for Smalltalk-80
by extending a minimal kernel of pure Smalltalk objects. Their implementa-
tion is not event-based and Smalltalk-80 does not support parallel execution of
concurrent actors on multi-processors (or multi-core processors).

Actra [29] extends the Smalltalk/V virtual machine with an object-based
real-time kernel which provides lightweight processes. In contrast, we implement
lightweight actors on unmodified virtual machines.

Chrysanthakopoulos and Singh [11] discuss the design and implementation
of a channel-based asynchronous messaging library. Channels can be viewed
as special state-less actors which have to be instantiated to indicate the types
of messages they can receive. Instead of using heavyweight operating system
threads they develop their own scheduler to support continuation passing style
(CPS) code. Using CLU-style iterators blocking-style code is CPS-transformed
by the C# compiler.

SALSA (Simple Actor Language, System and Architecture) [30] extends Java
with concurrency constructs that directly support the notion of actors. A pre-
processor translates SALSA programs into Java source code which in turn is
linked to a custom-built actor library. As SALSA implements actors on the
JVM, it is somewhat closer related to our work than Smalltalk-based actors or
channels. Moreover, performance results have been published which enables us
to compare our system with SALSA, using ports of existing benchmarks.

Timber is an object-oriented and functional programming language designed
for real-time embedded systems [6]. It offers message passing primitives for both
synchronous and asynchronous communication between concurrent reactive ob-
jects. In contrast to event-based actors, reactive objects cannot call operations
that might block indefinitely. Instead, they install call-back methods in the com-
puting environment which executes these operations on behalf of them.

Frugal objects [14] (FROBs) are distributed reactive objects that commu-
nicate through typed events. FROBs are basically actors with an event-based
computation model, just as our event-based actors. The goals of FROBs and

2 See http://www.jxta.org)/.
3 Available from http://scala.epfl.ch/.



