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Preface

When, some years ago, we started working on a differential geometric study of
the structure of strongly convex domains in C", we did not expect to end up writing
a book on global Finsler geometry. But, along the way, we found ourselves needing
several basic results on real and complex Finsler metrics that we were unable to find
in the literature (or at least not in the form necessary to us). So we felt compelled
to provide proofs — and this is the final result of our work.

Our exposition is very much in the vein of the work of Cartan [C], Chern [Chl,
2], Bao-Chern [BC] and Kobayashi [K]; in particular the latter gave us the pre-
liminary idea for our approach to smooth complex Finsler metrics. We would also
like to say that we would have been very happy to know earlier of [BC], which,
although only marginally related to our work, would have been of great help in
solving questions which we treated independently.

Our starting point was the study of the existence and global behavior of com-
plex geodesics for intrinsic metrics in complex manifolds. Our goal was to look at
this question from a differential geometric point of view, with the hope of possibly
reproducing in a wider class of complex manifolds what Lempert [L] was able to
prove for strongly convex domains in C". The idea was to treat complex geodesics
through a point as images of disks through the origin in the tangent space at the
point via the exponential map of a complex Finsler metric; thus we were led to
study the local and global theory of geodesics of a Finsler metric. As in Hermitian
(and Riemannian) geometry, the local theory of geodesics means the study of the
first variation of the length integral, and of the associated Euler-Lagrange equation.
The global theory, on the other hand, involves the accurate control of the second
variation and hence of the curvature, together with Jacobi fields, conjugate points,
the Morse index form and the like. In particular, we needed a Finsler version of the
Cartan-Hadamard theorem (originally proved by Auslander [Aul, 2]), and a way to
apply it in a complex situation.

The main difficulty at this point was that the problems we were interested in
involved complex Finsler metrics, and whereas there is a clear understanding of the
relationship between the complex geometry and the underlying real geometry of a
Hermitian manifold, nothing of the kind was available to us in Finsler geometry. We
then started following the tradition of “linearizing” the questions by passing from
the study of Finsler metrics on the tangent bundle (real or complex) to the study of
the associated Hermitian structure on the tangent bundle of the tangent bundle. At
this level it is also possible to describe the correct relationship between the complex
and the corresponding real structure of objects like connections and curvatures.

But our approach is different from the traditional one for two main reasons.
First of all, we everywhere stress global objects and global definitions (in fact, we
are interested in global results), using local coordinates almost uniquely as a com-
putational tool (in a way not too far from the first chapter of Bejancu [B]). But the
main difference is another one. Possibly because of our motivations, working in this
area we discovered that there might be a danger of carrying out the linearization
program previously described too far. In fact, the formal setting naturally leads to
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very general definitions which make proofs of theorems easier, but do not give much
geometrical insight: we had the feeling that working only at the tangent-tangent
level was too restrictive, too formal, too far away from the actual geometry of the
manifold. For this reason, our point of view now is to stick to notions which really
provide informations about the geometry of geodesics on the manifold, and about
the curvature of the manifold. This approach leads to “minimal” definitions, which
are probably more complicated to state and surely more difficult to handle, but
nevertheless more effective and really conveying the geometry of the manifold. For
instance, there are many ways of generalizing the notion of Kahlerianity to Finsler
metrics, but not all of them have non-trivial examples and applications. We shall
show how the notions we singled out can be effectively used by illustrating their
applications in complex geometric function theory.

The first two chapters of this book are devoted to the exposition of our approach
to real and complex Finsler geometry. In the first chapter, after setting the stage
introducing the necessary general definitions and objects, we define in a global way
the classical Cartan connection, and we discuss the variation formulas of the length
integral, the exponential map, Jacobi fields, conjugate points and the Morse index
form up to provide a proof of the Cartan-Hadamard and Bonnet theorems for Finsler
metrics suitable for our needs in complex geometry. In the exposition we stress the
similarities with the standard Riemannian treatment of the subject, as naturally
suggested by our global approach.

In the second chapter we study the geometry of complex Finsler metrics. After
having adapted the general definitions of chapter 1 to the complex setting, we in-
troduce (following Kobayashi [K]) the Chern-Finsler connection, which is our main
tool. We discuss at some length several Kahler conditions, and we introduce the
notion of holomorphic curvature of a complex Finsler manifold, showing the equiva-
lence of the differential geometric definition with a variational definition previously
used in function theory.

Finally the third chapter contains the results and applications that motivated
our work. From a differential geometric point of view, it is devoted to the study
of the function theory on Kéhler Finsler manifolds with constant nonpositive holo-
morphic curvature; from a complex analysis point of view, it is devoted to the study
of manifolds where there is a Monge-Ampeére foliation with exactly the same prop-
erties as the one discovered by Lempert in strongly convex domains. In particular
we prove the existence of nice foliations and strictly plurisubharmonic exhaustions
satisfying the Monge-Ampere equation on Kahler Finsler manifolds with constant
nonpositive holomorphic curvature. Furthermore we prove that the only complex
manifold admitting such a metric with zero holomorphic curvature is C", and we de-
scribe a characterization of strongly convex circular domains in terms of differential
geometric properties of the Kobayashi metric.

Of course, this book is not intended as a definitive treatise on the subject; on the
contrary, it is just the description of an approach to Finsler metrics that we found
reasonable and fruitful, but still leaving a lot of open problems. Just to mention
a couple of them: the comparison between the complex Finsler geometry and the
underlying real one carried out in section 2.6 seems to suggest that the Cartan
connection contains terms which have no direct influence on the geometry of the
manifold — and so maybe it is not the correct connection to use even in real Finsler
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geometry. Or: in the third chapter we give a fairly complete description of the
complex structure of Kahler Finsler manifolds of constant nonpositive holomorphic
curvature, which is satisfying from a geometric function theory point of view, but
it still leaves completely open the problem of classifying the metrics with these
properties (we remark that there are many more such manifolds and metrics than
in the Hermitian case: there are at least all the strongly convex domains in C"
endowed with the Kobayashi metric, thanks to Lempert’s work [L]) — and in fact
it is even still far from being completed the classification of simply connected real
Finsler manifolds with constant (horizontal flag) real curvature. Or: it follows from
chapter 3 that the only part of Lempert’s results actually depending on the strong
convexity of the domain is the smoothness of the Kobayashi metric. It would be then
interesting to construct directly a smooth weakly Kahler Finsler metric of constant
holomorphic curvature —4 on any strongly convex domain; then this metric would
automatically be the Kobayashi metric of the domain, and we would have recovered
the full extent of Lempert’s work.

So we hope that the possibly new perspectives on Finsler geometry introduced
in this book will eventually lead to new results in this field; and in particular in
geometric function theory of complex Finsler manifolds, where all this work started.
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CHAPTER 1

Real Finsler geometry

1.0. Introduction

As already discussed in the preface, this book is mainly devoted to the study of com-
plex Finsler geometry; but of course such a study cannot leave out of consideration
real Finsler manifolds. So this first chapter is devoted to a discussion of real Finsler
geometry, starting from the very basics and ending with a proof of the appropri-
ate versions of the Cartan-Hadamard and Bonnet theorems for Finsler manifolds,
obtained using global Riemannian-style techniques.

Let M be a real manifold endowed with a Finsler metric, that is with a positively
homogeneous function F:TM — R* smooth outside the zero section of TM and
strongly convex on each tangent space. Roughly speaking, our main idea is to
replace the given Finsler metric on TM by a Riemannian metric on a suitable sub-
bundle of T(TM) — in a certain sense we linearize the Finsler metric going one
step upstairs — and then use the standard tools of Riemannian geometry there. A
canonically defined isometric embedding of TM (outside the zero section, actually)
into this bundle will then allow us to transfer information back and forth, thus
giving geometrical results about the original manifold. For instance, we shall be
able to recover for Finsler manifolds more or less all the results described in the first
chapter of [CE] for Riemannian manifolds. We also refer to [C], [Rd1], [M], [Ch1]
and [B] for a description of the standard theory of real Finsler metrics, and to [Ch2]
and [BC] for a recent approach akin in spirit to ours.

To be more precise, let M be a manifold, and let m:TM — M denote the
tangent bundle of M; M will stand for TM \ {zero section}. The vertical bundle is
V = kerdr, a sub-bundle of TM. Take a Finsler metric F: TM — R* on M, and
set G = F?2. Then it is easy to see (section 1.4) that using the Hessian of G it is
possible to define a Riemannian metric on V in such a way that a canonically defined
section :: M — V of V (see section 1.1) turns out to be an isometric embedding of M
into V.

But this is not yet the setting mentioned before. The point is that to such a
Riemannian metric on the vertical bundle it is possible to associate two objects: a
linear connection D on V with respect to which the given Riemannian metric is par-
allel; and a horizontal bundle, that is a sub-bundle H of TM such that TM = H& V.
The general theory of horizontal bundles yields a bundle isomorphism ©:V — H;
using © we can define a Riemannian metric and a connection on ‘H — and hence
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on TM. This is the Cartan connection, the exact analogue in the Finsler setting
of the Levi-Civita connection (e.g., its torsion is almost zero — in a very definite
sense; furthermore, the torsion is identically zero if and only if the Finsler metric
actually is Riemannian, and in this case the Cartan connection coincides with the
Levi-Civita connection). The bundle H with this structure (and with its section
X = ©o.) provides the aforementioned setting, where one can use Riemannian tools
to get Finsler statements.

The main examples of this assertion are provided by the first and second varia-
tions of the length integral, derived in section 1.5; we get formulas formally identical
to the Riemannian ones, just replacing the curvature of the Levi-Civita connection
by (a suitable contraction of the horizontal part of) the curvature of the Cartan
connection. Then we shall be able to recover the Hopf-Rinow theorem for Finsler
manifolds (this is not too surprising, since it holds in much more general settings;
see [Ri]) and the theory of Jacobi fields and of the Morse index form, in a way
exactly parallel to the one presented in standard Riemannian geometry texts. In
particular, in section 1.7 we shall be able to prove the generalizations (originally
due to Auslander [Aul, 2]) to Finsler manifolds of the classical Cartan-Hadamard
and Bonnet theorems.

In detail, the content of this chapter is the following. In section 1.1 we discuss
at some length the general theory of horizontal bundles, horizontal maps (i.e., maps
like our © above) and non-linear connections on M. In section 1.2 we introduce
the concept of vertical connection (i.e., of linear connection on the vertical bundle),
and we show how to associate to certain vertical connections (we call them the good
ones) a horizontal bundle, and hence a non-linear connection on M and a linear
connection on M. In section 1.3 we define and discuss the torsion and the curvature
of a good vertical connection. In section 1.4 we define Finsler metrics, and we show
that to any Finsler metric F' is canonically associated a good vertical connection,
the Cartan connection mentioned before. Section 1.5 is devoted to prove the first
and second variation of the length integral for Finsler metrics; section 1.6 to parallel
transport, geodesics, the exponential map and the Hopf-Rinow theorem for Finsler
metrics. Finally in section 1.7 we shall define Jacobi fields and the Morse index form
in this setting, and we shall prove the Finsler versions of the Cartan-Hadamard and
Bonnet theorems.



1.1. Non-linear connections

1.1.1. Preliminaries

In this subsection we fix our notations and collect a few formulas concerning change
of coordinates. We choose symbols and notations so to be compatible with the
complex case we shall discuss in chapters 2 and 3; this is the reason behind some
apparently slightly unusual choices (u instead of v to denote tangent vectors, and
the like).

Let M be a real manifold of dimension m; we shall denote by TM its tangent
bundle, and by 7:TM — M the canonical projection, as usual. The cotangent
bundle will be denoted by T*M.

If (z,...,2™) are local coordinates on M about a point py € M, a vector
u € T, M (with p close to pg) is represented by
3]
u = U.a F 1
Ty

where we are using the Einstein convention, and lowercase roman letters run from 1

to m. In particular, local coordinates on T'M are given by (zl,... ™ol u™),
and so a local frame of T(T M) is given by {01,...,0m,01,...,0n}, where
0 . 17
0y = — d = —.
Oz o & Qub

We shall denote by o: M — TM the zero section of TM, that is o(p) = o,
is the origin of T,M, and we set M = TM \ o(M), the tangent bundle minus
the zero section. M is naturally equipped with the projection 7: M — M, the
restriction of the canonical projection of TM. Correspondingly, TM C T(TM)
comes equipped with a natural projection #: TM — M, the restriction of the natural
projection #: T(TM) —» TM.

We shall use uppercase roman letters to denote different coordinate patches.
A coordinate patch (Ua,p4) in M determines a coordinate patch (U4,$4) in TM
(and M) setting Uy = 71 (U4) and

Vu € Uy G a(u) = doa(u).

Ifpa=(zYy,...,27%), then {(8/6z£)|p} is a basis of T, M for any p € U4. Writing
u = u%(9/0z%), then

Galu)=(zh, ...,z ulyy ... u}).

On U NUp we have
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where ijg/az‘g =0(ppopy,')'/0z’,. By the way, we set
ot
JIBa = (—IF‘) ;
Oz’,

Jap=JTga0(paopg).

clearly,

Taking u € UanUp and expressing it in local coordinates, we find

; ; ozt ; 0 ozt
uly = dzly(u) = —2 da? (u" —> = =By
B B(u) amjA A Aazf‘ ax{“ A
that is
up =JBaua.
Therefore
(zB,uB) = @B o@, (za,ua) = (pBOY, (24), TpAUA)- (1.1.1)

Up to now everything was quite standard. But now something different: change
of coordinates in T(TM). Define (U 4,$4) by setting

iy

a=7"YUa) = (mo7) " (Ua)

and G4(X) = d@ (X) for any X € U 4.
A vector X € T(TM) in local coordinates is expressed by

X4 = X4(0:)a+X}(0)a = h(Xa) +v(Xa).
Taking derivatives of (1.1.1), we find the Jacobian matrix for T(TM):

dz'y | Oz} g
500 ﬁ (TBA): | 0
= A
JBA = = 621'h
Ouly 5o gor Ua | (Tealk
o0, | o w0’y
Setting
Ozt
(HBA)b = =224
M dz% 0z,
we find

(xB,uB, h(XB),v(XB)) = 953 o c;;l(zA,uA, h(XA),v(XA))

= (‘PB 0¢2 (za), Tpaua, Tpah(Xa),(Hpa)p vy (X )" + TBa U(XA))-
(1.1.2)



Now {3.,3 } is a local frame for T(TM); let {dz',du’} be the dual coframe (note
that dz'|, is not the same as dz'|,). First of all, (1.1.2) yields

; ort
dely = f‘ = (TBa)j da’y
o T4 " (1.1.3)
duly = == 2IB guk 4 = kaﬂ ulydzy = (Tpa)i duly + (Hpa)july de.
TA
Recalling that {dz*,du’} is the dual frame of {8:,9;}, we get
oz’ dz7, 0%zt ozt
(Gi)p = ar—f‘(aj)/x—a—,?a kaB lAa (0r)a
= (T5a) (0)a = (Tpa)F (Hpa)i(J, ‘,‘,)hu‘,,(é )4, (1.14)

“ (6'k)_4 = (Tgk(6c) -

(Bu)s = 222
h)B 61‘%

1.1.2. Horizontal and vertical bundles

Now we may introduce our first main actor.

DEFINITION 1.1.1: The vertical bundle of a manifold M is the vector bundle
#:V — TM of rank m = dim M given by

V =kerdr C T(TM).

In local coordinates,
paomo@, (za,un) =14,
and so
Pa odwoé:‘l(zA,uA,XA) =dpsodro(dpa)  (za,us, X4)

=d(paom o¢;l)(xA,uA,h(XA),v(XA))
= (IA,h(‘YA)).

This means that {94} is a local frame for V. We get charts restricting ¢ 4, and in
particular (1.1.2) yields

(zB,uB,VB) = ¢Bo 95 (za,ua,Va) = (ppopy (za), Tpaua, TpaVa).

Let jp: To,M — TM be the inclusion and, for u € T, M, let ky: T,M — Ty(T, M)

denote the usual identification. Then we get a natural isomorphism

tu = d(Jn(u))u © ku: Tr(u)yM — Vy. (1.1.5)



6

DEFINITION 1.1.2: The radial vertical vector field is the natural section ¢: TM — V
given by
Yu) = tu(u);

) .
ty | = =0 Iu;
(311 ”(u)> s

in particular, if u = u®(9/0z*) then

t(u) =1 <u°aia> = u®0y)u.

Note that the derivatives with respect to z (coordinates in M) become derivatives
with respect to u (coordinates in TM).

The vertical bundle is canonically defined; this is not the case for a horizontal
bundle. We may describe horizontal bundles using three different points of view,
each with its own advantages and disadvantages. The first two are easily introduced:

clearly, «(u) € V,.

In local coordinates,

DEFINITION 1.1.3: A horizontal bundle is a subbundle H of T(T M) such that
T(TM)=H® V.

DEFINITION 1.1.4: A horizontal map is a bundle map ©:V — T(TM) such that

Yue TM (dr0©), =7 ". (1.1.6)

We defined horizontal bundles (and horizontal maps) on TM, but it turns out
that they are interesting only over M. In fact, let o: M — TM denote the zero
section. It is easy to check that do,(8/0z7) = 8;; therefore we have the natural
splitting

T,,(TM) = Ho, & V.,

14

where H,, = do,(T,M ). We shall then assume that all our horizontal bundles coin-
cide with do,(T, M) over the zero section, and, analogously, that all our horizontal
maps satisfy

@o,(ahla,) = 6)1‘0,,-

Clearly, this may cause problems with the smoothness at the origin. We shall
henceforth assume that our horizontal bundles and maps will be smooth over M,
but they may be not smooth over the zero section. The reasons behind this approach
will become clear in section 1.4, when we shall define the concept of Finsler metric.

As mentioned before, there is a third approach to horizontal bundles, via the
notion of non-linear connection. But to describe it we need a digression on linear
connections.

If pp E — M is any bundle over M, we shall denote by X'(E) the space of
sections of E.



7
DEFINITION 1.1.5: A linear connection on a manifold M is a R-linear map
D:X(TM) - X(T*M @ TM)
satisfying the derivation property
VE € X(TM)Vf € C(M) D(f¢) = df ® £ + fDE. (1.1.7)
As a consequence, D¢ at a point p € M depends only on the value of ¢ and d¢
at the point p. Indeed, let £’ € X(TM) be another vector field with £(p) = €'(p)

and df, = d¢,. Then ' = { + fn for suitable n € X(TM) and f € C®(M) with
f(p) =0 and df, = 0. So

D¢' = D€ + D(fn) = D& + df @ n + fDn,

and D¢, = D¢,
There is another way of expressing this. Let £, £’ € X(TM) be such that
&(p) = €'(p) = u; then €' = € + fn with f(p) = 0. In particular,

D¢, = D&, + df, @ n(p)-
Now, for any v € T, M, writing v = v%(9/0z%) and £ = £%(8/0z®), one has

oe
Oz°
So d§, — d€, maps T, M into V,; furthermore, (1.1.8) also yields

Vo € T,M dé,(v) — dép(v) = v(f)eu(n(p)) = cu(v(fn(p)),
and thus

dfp(v) = Uaaalu +v? (P)ablw (1.1.8)

7" o (d€j — dEy) = df, ® n(p)- (1.19)
Summing up, if £(p) = €'(p) = u we get
D¢, — D&y = 17" o (dE, — dé,), (1.1.10)

which we may consider as an intrinsic way of saying that f){, depends only on £(p)
and df,.

There is another easy consequence of (1.1.7) worth remarking. If we apply
(1.1.7) to the zero section o with f = 0 we get

Do=0, (1.1.11)

i.e., Dop(u) = o, for all p€ M and u € T,M.
We are now ready to introduce the third incarnation of horizontal bundles.

DEFINITION 1.1.6: A non-linear connection is a map D: X(TM) — X(T*M ®TM)
satisfying (1.1.10) and (1.1.11). D¢ is called the covariant differential of the vector
field ¢ € X(TM), and D¢,(u) (which we shall denote by V) is the covariant
derivative of £ in the direction of u € T,M.



