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Preface

This text is the result of teaching a full-year, junior-level course in
experimental physics over the past six years. The course consists of three
hours of lecture per week and a complementary laboratory, and so this
book serves as both source material for the lecture and reference for the
laboratory. In cases where a lecture course on experimental physics is
taught independently of laboratory work, this text should provide enough
material for two semesters. In cases where a laboratory course is taught
without accompanying lectures, this book should serve as a useful reference.
However, it is not intended as a laboratory manual of physics experiments.
The purpose of the text is to provide an overview of the physical principles
of experimental apparatus and measurement techniques and, for the most
part, does not make reference to specific experiments. The text assumes the
student has a knowledge of introductory mechanics, electricity, and
magnetism, including some background in wave mechanics. Some fami-
liarity with basic quantum mechanics would also be helpful. Most of the
discussions on optics and on nuclear, atomic, and solid-state physics are
developed from basic principles. Typically, physics majors at the junior
level or higher should have sufficient background to follow the presentation.

Experimental physics encompasses a vast number of different areas. It is
not possible to provide even a brief description of experimental techniques
from all these areas within a single text; nor would this necessarily be
desirable. Since this text is designated for use by advanced undergraduate
students, it deals with those subjects which these students are most likely to
encounter from an experimental point of view. For this reason, the book
concentrates on three particular areas of modern physics: solid-state
physics, optics, and nuclear physics, though the apparatus and techniques
described here are frequently applicable to other areas of physics as well.
To understand the operation of modern laboratory apparatus, some
knowledge of electronics is necessary. And since it has been assumed that
many physics majors do not have any formal background in electronics, the
necessary introductory material is also presented. This treatment of
electronics emphasizes the physics of electronic devices rather than prin-
ciples of circuit design.

Specifically, Chapter 1 is an introduction to the band theory of solids.
This is necessary for an understanding of semiconducting devices, which first
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appear in Chapters 2 and 3, as well as for the discussions on the physics of
sensors, which appear throughout the later chapters. Chapter 4 presents an
overview of electronic techniques for signal processing and data accumula-
tion. Chapters 5 to 7 deal with producing, controlling, and measuring
temperature and pressure.

The remaining material can be divided into three main groups. Chapters 8
to 10, which deal with optics, Chapters 11 and 12, which deal with nuclear
physics, and Chapters 13 and 14, which deal with solid-state properties.
These three groups may be covered in any order with one exception. The
section on photomultiplier tubes, which appears in section 10.1, is important
for the discussion of scintillation detectors, which begins in section 12.1.

Finally, the use of nomenclature and units requires some comment. This
book deals with topics from several diverse fields of physics. The nomencla-
ture and units commonly used in the different fields are not always
consistent. As much as possible, the nomenclature and symbols used for
various quantities have been made uniform throughout the book. Also,
wherever practical, the SI system of units has been used, although in some
specific cases the more customary unit has been retained.

February 1988
Halifax, Nova Scotia R. A. D.
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1

The electrical properties
of solids

1.1 The free-electron model

The electrical conductivity of solids covers one of the largest ranges of
values of any physical parameter known—more than 25 orders of mag-
nitude. This range is illustrated in Figure 1.1. Materials are grouped roughly
into three categories according to electrical properties: conductors, semi-
conductors, and insulators. To understand the reasons for these distinctions,
it is necessary to gain some insight into the behavior of electrons.

Although in some cases the electron behaves like a particle, it can be
shown (e.g., by diffraction experiments) to possess characteristics of a wave
as well. The wave-like nature of the electron is described by a wave
equation, just as are the displacement of a vibrating string and the density
fluctuations in air caused by sound waves. For electrons, the relevant entity
is the electron wavefunction. This is a function of the spatial coordinates,
y(r), and its square, |y(r)|*= |y (r)y(r)*|, gives the probability of finding
the electron at some particular location at a given time. For simplicity, we
consider the one-dimensional case. The derivation of the three-dimensional
case is somewhat more complicated but follows along the same lines. The
wave equation for an electron is Schrodinger’s equation and in one
dimension it has the form

n 3y

2m ax*

Vy=—-€y (1.1)

where #i is Planck’s constant, m is the mass of the electron, € is its total
energy, and V is the potential energy. As the simplest case, we consider a
free electron. In this case, the electron does not interact with other
electrons or with atoms or ions. This means that, at least for the time being,
we assume that there are no perturbing fields (e.g., electric or magnetic
fields). Hence V =0, and the energy of the electron is merely the kinetic
energy, € =3imv?. (We have ignored relativistic effects here and it will turn
out that, in dealing with electrons in solids, this omission is justifiable.)
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Figure 1.1. Electrical conductivity of some cornmon materials.

Hence, substituting for € and rearranging, equation (1.1) becomes
Py  m*v?
ox? "

We will substitute the nonrelativistic momentum p = mv into subsequent

steps of the derivation. Partial differential equations of the form of (1.2) can

be solved most easily by guessing at an appropriate function ¥(x), usually

with some insight into what the answer should be. In this case, our insight
provides the answer

v (1.2)

Y(x) = Asin(px/h) + B cos(px/h) (1.3)

An important observation we can make from equation (1.3) is that the
wavefunction of an electron has a wavelength A that is inversely propor-
tional to the electron momentum by

_2nh
P

that is, the more energetic the electron, the shorter is its wavelength—we
recall that the same is true for photons.

Now let us consider the behavior of an electron in a solid. We continue to
make the assumption that the electron does not interact with the atoms or
with other electrons, so equation (1.2) is still valid inside the material. At
room temperature, the electron cannot normally escape from the solid, and
the reason for this is simple. If a negatively charged electron were to escape
from the surface of the material, it would immediately be attracted back
into the material by the positive image charge created by the electron’s
absence. If an electron gains sufficient energy, as it can in materials at
higher temperatures, it can escape from the attraction of its own image

A (1.4)



The electrical properties of solids 5

V=0
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Figure 1.2. Potential energy diagram for an electron in a piece of material in one dimension.

charge. This phenomenon is called thermionic emission, and later we will
learn about some of its characteristics. Considering the room-temperature
situation, in which this does not occur, we see that there is, in effect, an
infinite potential well at the edge of the solid. For a piece of material of
length a, the potential energy is described by Figure 1.2. Hence, outside of
the material, the wave equation for the electron has the form of equation
(1.1) with V =0, This has only the trivial solution y = 0. Since ¥ must be
continuous, we can apply boundary conditions to equation (1.3) at x =0 and
x =a. The ¥(0) =0 condition requires that B =0, but places no restrictions
on A. For y(a)=0 we have pa/fi=nnx, where n is an integer. Thus, the
momentum, and hence the energy, is quantized and this quantization results
from the application of the boundary conditions. So we have the momenta

nih
p=— (1.5)

a
and the corresponding energy levels

=L (1.6)

which are

€=—> (1.7)

Thus, the wavefunction for the electron in one dimension has modes of
oscillation in the material analogous to the modes of oscillation in a string
with both ends fixed. This is shown in Figure 1.3. The square of 1, which is
always a positive quantity, gives the probability of finding the electron at a
particular location. Since y =0 outside of the material (i.e., for x <0 and
x >a), the probability of finding the electron outside of the material is, as
we expect, zero.

The relationship between € and p is known as a dispersion relation and
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Figure 1.3. Modes of oscillation for a free electron in a piece of material of length a.

X =

n = 2 mode

for the free electron it is seen from equation (1.6) to be parabolic (see
Figure 1.4). The allowed energy (or momentum) states, as given by
equation (1.7), are shown in the figure. We see from equation (1.6) that the
dispersion relation for all free electrons is the same, but it is clear from
equation (1.7) that the spacing in energy between the allowable states
depends on a, the size of the piece of material. The number of states per
unit energy is referred to as the ““density of states.” The larger the sample,
the greater the density of states.

Let us now consider which states will be occupied. When the temperature
is very low and there are no perturbing forces, the system will be in its
ground state. For electrons, which are fermions, there are restrictions on
how the energy states can be filled. This restriction is called the Pauli
exclusion principle. Basically, it states that any given energy level can
contain at most two electrons, one with spin up and one with spin down.

Let us look again at the dispersion relation in Figure 1.4. We see that
each energy has two corresponding momenta, one positive and one
negative. This is because energy is a scalar quantity and momentum is a
vector. In one dimension the electron can have the same energy by
travelling at a particular speed in one direction or the other. These two
cases correspond to momenta of opposite signs. An electron can reverse its
direction and hence the sign of its momentum without a change in energy by
scattering elastically from the potential wall at either end of the piece of
material. These two momenta [(+) and (—)] for a given energy are not
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Figure 1.4. Dispersion relation for free electrons showing allowed energy states. The energy
is given in units of 7°4>/2ma” and the momentum is given in units of #/a.

analogous to the two spin states! For simplicity, we redraw the dispersion
relation for |p| rather than for p. This is illustrated in Figure 1.5.

Now we can begin to fill up the available states, placing up to two
electrons in each, as indicated in Figure 1.5. Ultimately what we would like
to determine is the maximum energy an electron can have in the ground
state. To find this qualitatively, we consider a material with a density n, of
electrons. In one dimension this is the number of electrons per unit length.
A length a of material then contains N = nya electrons. Since there can be
two electrons per state, we require an,/2 states to accommodate all of the
electrons. The energy of the highest filled state is obtained from equation

!

Empty states

man | )
8m /1.‘ W
‘.‘ Filled states
foy” )
lp|

Figure 1.5. Population of the energy levels of a one-dimensional system of fermions in the
ground state.
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(1.7) by substituting n = an,/2 and is called the Fermi energy. This is found
to be

nom*h?

& (1.8)

8m

We note that this energy depends on the density of the electrons in the
material but not on the overall dimensions of the piece of material. We
should emphasize that the number of energy states below &, does depend
on the size of the material since, the larger this is, the more electrons must
be accommodated. Figure 1.5 shows how the electrons are arranged in the
energy levels, one with spin up and one with spin down to each level. If we
had proceeded with this derivation in three dimensions, we would have
obtained the Fermi energy as

2

h 5. \2
& =5 (37°ny)*” (1.9)
2m

where n, is the electron density per unit volume.

The above calculation applies at zero temperature. At finite temperature,
the probability that an energy state is occupied is a function of energy and
of temperature. This probability function is the Fermi-Dirac distribution
and it is illustrated in Figure 1.6. These curves should, in fact, be a series of
dots equally spaced in momentum, as the allowed states are quantized. If
the sample is large and contains a large number of electrons, the dots are
closely spaced and, as in the figure, appear as a solid line. The mathematical
form of the Fermi—Dirac distribution is given by

2
(&) = —aamr 1 (1.10)

where kg is Boltzmann’s constant. The 2 in the numerator comes from the

(&)
2

£ e

OF I

Figure 1.6. Fermi-Dirac distribution for electrons (0< T, < T5).
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Figure 1.7. Dispersion relation for free electrons at 7 > 0.

two allowed spin states per energy state. By inspection of equation (1.10)
we can see that f(&) for T =0 is a step function with a value of 2 for €> &,
and a value of 0 for € > &,. This represents the ground-state situation we
have previously described. As T increases, the curve smears out around &.
This corresponds to the electrons near the Fermi energy jumping up into
unoccupied higher-energy states. The lower-energy electrons cannot gain
any additional energy unless there is a unoccupied energy state above them
and they have sufficient energy to jump up into that empty state. At some
intermediate temperature, the situation is as shown in Figure 1.7. Hence,
the states can be divided into three regions; filled, partially filled, and
vacant. The integral of f(&) must be independent of temperature, as the
number of electrons is conserved. You can see this for yourself by
integrating equation (1.10) over energy.

Materials contain a lot of electrons, many of which are unimportant
(more or less) in determining the electronic properties. It turns out that the
electrons that are of importance are the valence electrons. The core
electrons remain localized around particular atoms and, at least to first
order, are not important to the electronic properties. In the general sense,
the valence electrons are those that have “orbits’ that encompass more than
one atom. So, when we look back at equations like (1.8), it is only the
valence electrons that we have to consider in determining .

Now let us use what we have learned to calculate some measurable
properties of a material. Consider a sample of cross section A and of length
I. We attach leads to each end and supply a voltage V. Free electrons can
gain energy via interaction of their charge with the electric field £ produced
by the applied voltage. We perform the experiment as shown in Figure 1.8.
At some time (defined as ¢t = 0) we close the switch and apply the electric
field. The motion of an electron at the Fermi energy can be considered as
that of an entirely free electron, because there are unlimited empty energy
states above it. Hence we can write down the equation of motion for this
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Figure 1.8. Experiment for measuring the electrical conductivity of a sample.

electron in terms of the Lorentz force:
F=—-e(E+vXB) (1.11)

where e is the electron charge, v is the electron velocity, E is the applied
electric field, and B is the applied magnetic flux density. Since, in our
experiment, B =0, equation (1.11) is immediately separable and we can
integrate it to obtain

P t
f dp = -—eEf dt (1.12)
Po 0

or
p=po—eEt (1.13)

where p, is the momentum of the electron before the electric field was
applied. Since p, is small, the (nonrelativistic) energy of the electron at time
t after the switch is closed is

2E2t2
g=°

. (1.14)

To find the conductivity of a material, let us write the well-known form of
Ohm’s law

V =IR (1.15)
Dividing each side of this equation by the length of the material to give
V. IRA
—=—— 1.1
I Al (1.16)

we see that the left-hand side is just the electric field inside the material.
The first factor on the right-hand side is the current density j, and the
second factor on the right-hand side is the resistivity p, or the inverse of the
conductivity 0. Thus Ohm’s law may be written in the form

j
E== 1.17
. (1.17)



