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Preface

Peer-to-peer (P2P) computing is currently attracting enormous media attention,
spurred by the popularity of file sharing systems such as Napster, Gnutella and
Morpheus. In P2P systems a very large number of autonomous computing nodes
(the peers) pool together their resources and rely on each other for data and
services.

The wealth of business opportunities promised by P2P networks has genera-
ted much industrial interest recently, and has resulted in the creation of various
industrial projects, startup companies, and special interest groups. Researchers
from distributed computing, networks, agents and databases have also become
excited about the P2P vision, and papers tackling open problems in this area
have started appearing in high-quality conferences and workshops.

Much of the recent research on P2P systems seems to be carried out by re-
search groups with a primary interest in distributed computation and networks.
This workshop concentrated on the impact that current database research can
have on P2P computing and vice versa. Although researchers in distributed
data structures and databases have been working on related issues for a long
time, the developed techniques are simply not adequate for the new paradigm.
P2P computing introduces the paradigm of decentralization going hand in hand
with an increasing self-organization of highly autonomous peers, thus departing
from the classical client-server computing paradigm. This new paradigm bears
the potential to realize computing systems that scale to very large numbers of
participating nodes. Taking advantage of this potential for the area of data ma-
nagement is a challenge that the database community itself is asked to face. The
realization of the P2P computing vision is however a Herculean task, fraught
with immense technical difficulties. As a result, it offers database theoreticians
and system developers a new set of exciting open problems.

We believe that database research has much to contribute to the P2P grand
challenge through its wealth of techniques for sophisticated semantics-based data
models, clever indexing algorithms and efficient data placement, query processing
techniques and transaction processing. The database community could benefit
from the P2P computing vision by developing loosely coupled federations of
databases where databases can join and leave the network at will; a single global
schema is not a possibility, and answers need not be complete but should be best
effort.

Database technologies in the new information age will form the crucial com-
ponents of the first generation of complex adaptive information systems. These
are an emerging kind of information systems that are very dynamic, self-organize
continously and adapt to new circumstances, they are locally but not globally
optimized, and form a whole which is greater than the sum of its parts. These
new information systems support highly dynamic, ever-changing, autonomous
social organizations and can no longer be developed using traditional analy-
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sis, design and implementation techniques. This workshop also concentrated on
complex adaptive information systems, their impact on current database tech-
nologies and their relation to emerging industrial technologies such as IBM’s
autonomic computing initiative.

This workshop, collocated with VLDB, the major international database
and information systems conference, brought together key researchers from all
over the world working on databases and P2P computing with the intention of
strengthening this connection. Also researchers from other related areas such as
distributed systems, networks, multiagent systems and complex systems parti-
cipated.

The workshop was jointly organized with the AP2PC workshop which is part
of the AAMAS conference and is under the responsibility of the same steering
committee. Together these two workshops address both the agent and the data-
base communities and thus take account of the interdisciplinary nature of P2P
computing.

The DBISP2P workshop received 32 submissions that entered the review
process. All submissions underwent a rigorous review that was completed by an
online PC discussion for making the final selection of 16 papers. The organi-
zers would like to thank at this point all program committee members for their
excellent work. The program was completed by a keynote speech and a panel.
The keynote speech with the title “Design Issues and Challenges for RDF- and
Schema-Based Peer-to-Peer Systems” was presented by Wolfgang Nejdl from
the University of Hannover. Aris Ouksel organized a panel on the topic “P2P
Computing and Database Technologies: Convergence of Technologies and Socio-
economic Characteristics on the Web, Benefits and Technical Challenges in Da-
tabase Applications” with the goal to explore the promise of P2P to offer exciting
new possibilities in distributed information processing.

The organizers would particularly like to thank Klemens Béhm from the
University of Magdeburg for his excellent work in taking care of the local ar-
rangements, the VLDB organization for their valuable support of the workshop
organization, and the steering committee for the opportunity to set up this
workshop and for their continuing support.

September 2003 Karl Aberer, Manolis Koubarakis, Vana Kalogeraki
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Design Issues and Challenges for RDF- and
Schema-Based Peer-to-Peer Systems

Wolfgang Nejdl

Learning Lab Lower Saxony and University of Hannover, 30539 Hannover
nejdl@learninglab.de

Abstract. Databases have employed a schema-based approach to store
and retrieve structured data for decades. For peer-to-peer (P2P) net-
works, similar approaches are just beginning to emerge. While quite a
few database techniques can be re-used in this new context, a P2P data
management infrastructure poses additional challenges which have to be
solved before schema-based P2P networks become as common as schema-
based databases. We will describe some of these challenges and discuss
approaches to solve them, basing our discussion on the design decisions
we have employed in our Edutella infrastructure, a schema-based P2P
network based on RDF and RDF schemas.

K. Aberer et al. (Eds.): VLDB 2003 Ws DBISP2P, LNCS 2944, p. 1, 2004.
© Springer-Verlag Berlin Heidelberg 2004



SIL: Modeling and Measuring Scalable
Peer-to-Peer Search Networks*

Brian F. Cooper and Hector Garcia-Molina

Department of Computer Science
Stanford University
Stanford, CA 94305 USA
{cooperb,hector}edb.Stanford.EDU

Abstract. The popularity of peer-to-peer search networks continues to
grow, even as the limitations to the scalability of existing systems be-
come apparent. We propose a simple model for search networks, called
the Search/Indez Links (SIL) model. The SIL model describes existing
networks while also yielding organizations not previously studied. Using
analytical and simulation results, we argue that one new organization,
parallel search clusters, is superior to existing supernode networks in
many cases.

1 Introduction

Peer-to-peer search networks have become very popular as a way to effectively
search huge, distributed data repositories. On a typical day, systems such as
Kazaa support several million simultaneous users, allowing them to search hun-
dreds of millions of digital objects totaling multiple petabytes of data. These
search networks take advantage of the large aggregate processing power of many
hosts, while leveraging the distributed nature of the system to enhance robust-
ness. Despite the popularity of peer-to-peer search networks, they still suffer
from many problems: nodes quickly become overloaded as the network grows,
and users can become frustrated with long search latencies or service degradation
due to node failures. These issues limit the usefulness of existing peer-to-peer
networks for new data management applications beyond multimedia file sharing.

We wish to develop techniques for improving the efficiency and fault tolerance
of search in networks of autonomous data repositories. Our approach is to study
how we can place indexes in a peer-to-peer network to reduce system load by
avoiding the need to query all nodes. The scale and dynamism of the system,
as large numbers of nodes constantly join and leave, requires us to re-examine
index replication and query forwarding techniques.

However, the space of options to consider is complex and difficult to ana-
lyze, given the bewildering array of options for search network topologies, query
routing and processing techniques, index and content replication, and so on. In

* This material is based upon work supported by the National Science Foundation

under Award 9811992.

K. Aberer et al. (Eds.): VLDB 2003 Ws DBISP2P, LNCS 2944, pp. 2-16, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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order to make our exploration more manageable, we separate the process into
two phases. In the first phase, we construct a coarse-grained architectural model
that describes the topology of the connections between distributed nodes, and
models the basic query flow properties and index placement strategies within
this topology. In the second phase, we use the insights gained from the archi-
tectural model to develop a finer-grained operational model, which describes at
a lower level the actual processing in the system. The operational model allows
us to study alternatives for building and maintaining the topology as nodes join
and leave, directing queries to nodes (for example, using flooding, random walks
or routing indices), parallel versus sequential query submission to different parts
of the network, and so on.

Our focus in this paper is on the first phase architectural model. We have
developed the Search/Index Link (SIL) model for representing and visualizing
peer-to-peer search networks at the architectural level. The SIL model helps us
to understand the inherent properties of many existing network architectures,
and to design and evaluate novel architectures that are more robust and efficient.
Once we understand which architectures are promising, ongoing work can exam-
ine operational issues. For example, in [4], we examine the operational question
of how the architectures described here might be constructed. In this paper, we
first present and analyze the SIL model, and show how it can lead to new search
network architectures. Then, using analytical and simulation results, we show
that our new organizations can be superior to existing P2P networks in several
important cases, in terms of both efficiency and fault tolerance.

2 The Search/Index Link Model

A peer-to-peer search network is a set of peers that store, search for, and transfer
digital documents. We consider here content-based searches, such as keyword
searches, metadata searches, and so on. This distinguishes a peer-to-peer search
network from a distributed hash table [14,11], where queries are to locate a
specific document with a specific identifier (see Section 5 for more discussion
about SIL versus DHT's). Each peer in the network maintains an index over its
content (such as an inverted list of the words in each document) to assist in
processing searches. We assume that the index is sufficient to answer searches,
even though it does not contain the whole content of the indexed documents.

The search network forms an overlay on top of a fully-connected underlying
network infrastructure. The topology of the overlay determines where indexes
are placed in the network, and how queries reach either a data repository or an
index over that repository’s content. Peers that are neighbors in the overlay are
connected by network links that are logically persistent, though they may be
implemented as connection-oriented or connectionless.

The Search/Index Link (SIL) model allows us to describe and visualize the
overlay topology. In the SIL model, there are four kinds of network links, distin-
guished by the types of messages that are sent, and whether a peer receiving a
message forwards the message after processing it:
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Fig. 1. Networks: (a) with search links, (b) with search and index links.

A non-forwarding search link (NSL) carries search messages a single hop in
the overlay from their origin. For example, a search generated at one peer A
will be sent to another peer B, but not forwarded beyond B. Peer B processes
each search message and returns results to A.

e A forwarding search link (FSL) carries search messages from A to B. Peer
B will process each search message, return search results to A, and forward
the message along any other forwarding search links originating at B. If A is
not the originator of the query, it should forward any search results received
from B (and any other nodes) along the FSL on which A received the query.

e A non-forwarding index link (NIL) carries index update messages one hop in
the overlay from their origin. That is, updates occurring at A will be sent to
B, but not forwarded. Peer B adds A’s index entries to its own index, and
then effectively has a copy of A’s index. Peer B need not have a full copy of
A’s content.

e A forwarding indez link (FIL) carries index update messages from A to B,
as with non-forwarding index links, but then B forwards the update message
along any other forwarding index links originating at B.

For FSLs and FILs, messages should have unique ids, and a peer should discard
duplicate messages without processing or forwarding them. This avoids infinite
propagation of messages if the network has cycles.

Network links are directed communications channels. A link from peer A to
peer B indicates that A sends messages to B, but B only sends messages to A
if there is also a separate link from B to A. Modeling links as directed channels
makes the model more general. An undirected channel can be modeled as a pair
of directed links going in opposite directions. For example, the links in Gnutella
can be modeled as a pair of FSLs, one in each direction. Although forwarding
links may at first glance seem more useful, we will see how non-forwarding links
can be used in Section 3.

Figure 1a shows an example network containing search links. Non-forwarding
search links are represented as single arrows (—>) while forwarding search links
are represented as double arrows (—>). Imagine that a user submits a query to
peer A. Peer A will first process the query and return any search results it finds
to the user. Node A will then send this query to both B and C, who will also
process the query. Node B will forward the query to D. Node C will not forward
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the query, since it received the query along an NSL. The user’s query will not
reach F at all, and E’s content will not be searched for this query.

A peer uses an indez link to send copies of index entries to its neighbors.
These index entries allow the content to be searched by the neighbors without
the neighbors having to store the peer’s actual content. For example, consider a
peer A that has an index link to a peer B. When B processes a query, it will
return search results both for its own content as well as for the content stored at
A. Peer A need not process the query at all. We say that B is searched directly
in this case, while A is searched indirectly.

Whenever a peer creates a new index entry or modifies an existing entry,
it should send a message indicating the change along all of its outgoing index
links. A peer might create an index over all of its locally stored documents
when it first starts up, and should send all of the index entries to each of its
index link neighbors. Similarly, if a node deletes a document, it would remove
the corresponding entries from its own index as well as notifying its index link
neighbors to do the same.

Figure 1b shows a network that contains both search and index links. Index
links are represented as dashed lines, single (--->) for non-forwarding index links
and double (:=:>) for forwarding index links. (Note that Figure 1b contains only
FILs.) Nodes A, B, C and D are connected by a “ring” of FILs. An index update
occurring at peer A will thus be forwarded to B, C, D and back to A (A will not
forward the update again). In fact, all four of the nodes A...D will have complete
copies of the indexes at the other three nodes in the index “ring”. Nodes E, F,
G and H are connected by FSLs, and a search originating at any peer E...H will
reach, and be processed by, the three other nodes on the search “ring.” Notice
that there is also an FSL between E and D. Any query that is processed by F
will be forwarded to D, who will also process the query. Since D has a copy of
the indexes from A...C, this means that any query generated at E, F', G and H
will effectively search the content of all eight nodes in the network. In contrast,
a query generated at nodes A...D will be processed at the node generating the
query, and will only search the indexes of the nodes A...D.

A search path from X to Y indicates that queries submitted to X will even-
tually be forwarded to Y, either through a sequence of F'SLs or by a single NSL.
For example, in Figure 1b there is a search path from F' to D but not from D
to F'. There is (trivially) a search path from a node to itself. Similarly, an index
path from X to Y is a sequence of FILs from X to Y, or one NIL from X to Y.
In this case, X’s index updates will be sent to Y, and Y will have a copy of X’s
index.

2.1 “Good” Networks

The network links we have discussed above are not by themselves new. For-
warding search links are present in Gnutella, forwarding index links are used
in publish/subscribe systems, non-forwarding index links are used in supernode
networks, and so on. However, different link types tend to be used in isolation
or for narrowly specific purposes, and are rarely combined into a single, general
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model. Our graphical representation allows us to consider new combinations. In
fact, the number of search networks of n nodes that can be constructed under
the SIL model is exponential in n2. Only a small fraction of these networks will
allow users to search the content of most or all the peers in the network, and
an even smaller fraction will also have desirable scalability, efficiency or fault
tolerance properties. We want to use the SIL model to find and study “good”
networks, and this of course requires defining what we mean by “good.”

First, we observe that a search network only meets users’ needs if it allows
them to find content. Since content may be located anywhere in the network, a
user must be able to effectively search as many content repositories as possible,
either directly or indirectly. We can quantify this goal by defining the concept
of coverage: the fraction of peers in the network that can be searched, either
directly or indirectly, by a query generated by a peer p. Ideal networks would
have full coverage: all peers have coverage = 1, and if content exists anywhere in
the network, users can find it. It may be necessary to reduce coverage in order
to improve network efficiency.

Even a network that has full coverage may not necessarily be “good.” Good
networks should also be efficient, in the sense that peers are not overloaded
with work answering queries. One important way to improve the efficiency of a
network is to reduce or eliminate redundant work. If peers are duplicating each
other’s processing, then they are doing unnecessary work.

Definition 1. A search network N has redundancy if there ezists a network
link in N that can be removed without reducing the coverage for any peer.

Intuitively, redundancy results in messages being sent to and processed by peers,
even when such processing does not add to the network’s ability to answer
queries.

Redundancy can manifest in search networks in four ways:

e Search/search redundancy occurs when the same peer P processes the same
query from the same user multiple times.

e Update/update redundancy occurs when the same peer P processes the same
update multiple times.

e Search/inder redundancy means a peer A processes a query even though
another peer B has a copy of A’s index and processes the same query.

o Indez/index redundancy is where two different peers B and C both process
a search over a copy of a third peer A’s index.

In each of these cases, a node is doing work that is unnecessary to achieve high
or full coverage.

Note that redundancy may actually be useful to improve the fault tolerance of
the system, since if one node fails another can perform its processing. Moreover,
redundancy may be useful to reduce the time a user must wait for search results,
if a node near the user can process the user’s search even when this processing is
redundant. However, fault tolerance and search latency tradeoff with efficiency,
since redundancy results in extra work for peers.
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Fig. 2. Networks: a. with search/index redundancy, b. no search/index redundancy, c.
search-fork, and d. index-fork

2.2 Topological Features of Networks with Redundancy

The concept of “redundancy” and even the subconcepts like search/index re-
dundancy are quite general. Rather than avoiding generalized redundancy when
designing a peer-to-peer search network, it is easier to identify specific features
of network topologies that lead to redundancy, and avoid those features.

A feature that causes search/index redundancy is a specific type of cycle
called a one-cycle. A one-index-cycle is a version of a one-cycle:

e A one-index-cycle is when a node A has an index link to another node B,
and B has a search path to A.

An example is shown in Figure 2a. This construct leads to redundant processing,
since B will answer queries over A’s index, and yet these queries will be forwarded
to A who will also answer them over A’s index. More formally, a one-index-cycle
fits our definition of redundancy because at least one link in the cycle can be
removed without affecting coverage: the index link from A to B. Another version
of a one-cycle is a one-search-cycle:

e A one-search-cycle is when a node A has an search link to another node B,
and B has an index path to A.

While one-cycles (one-index-cycles and one-search-cycles) cause redundancy, not
all cycles do. Consider the cycle in Figure 2b. This cycle may seem to introduce
redundancy in the same way as a one-cycle, except that none of the links can be
removed without reducing coverage for some node.

Another feature that causes search/index redundancy is a fork.

o A search-fork is when a node C has a search link to A and a search path to
B that does not include A, and there is an index path from A to B.

An example of a search-fork is shown in Figure 2c. Again, A will process any
searches from C unnecessarily, since B can process the queries for A. The redun-
dant link in this example is the link C=>A. We specify that there is a search
path from C to B that does not include A because if the only path from C to
B included A there would be no link that could be removed without reducing
coverage. The analog of a search-fork is an indez-fork; an example is shown in
Figure 2d.
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e An indez-fork is when a node C has an index link to A and an index path
to B that does not include A, and there is a search path from A to B.

The third feature that causes redundancy is a loop:

e A search-loop is when a node A has an search link I to another node B, and
also another search path to B that does not include [;.

e An indez-loop is when a node A has an index link /; to another node B, and
also another index path to B that does not include ;.

Avoiding all of these topological features is sufficient to avoid the general
property of redundancy in a network.

Theorem 1. If a network has mo one-cycles, forks or loops, then it has no
redundancy.

Proof. The proof is straightforward: a redundant edge implies one of the named
features. The full proof is available in the extended version of this paper [5]. O

3 Network Archetypes

We can now identify some archetypical network organizations described by the
SIL model. Each archetype is a family of topologies that share a common general
architecture. We restrict our attention to somewhat idealized networks, that is,
non-redundant networks with full coverage, in order to understand the inher-
ent advantages and disadvantages of various architectures. We do not claim to
examine the entire design space of peer-to-peer topologies. Instead, by looking
at some representative archetypes of a particular design point, that is, non-
redundant full-coverage networks, we can both understand that design point
clearly and also illustrate the value of SIL as a design tool.

We consider only the static topologies described by the SIL architectural
model, in order to determine which topologies have efficiency or fault tolerance
benefits and are worth examining further. If a particular archetype is selected for
a given application, there are then operational decisions that must be made. For
example, if a supernode archetype (described fully below) is chosen as desirable,
there must be a way to form peers into a supernode topology as they join the sys-
tem. One way to form such a network is to use a central coordinator that selects
which nodes are supernodes and assigns them responsibility for non-supernodes.
Alternatively, nodes could decide on their own whether to be supernodes or not,
and then advertise their supernode status to connect to other, non-supernode
peers. This dynamic process of forming a specific topology is outside the scope
of this paper, as we wish to focus for now on which topology archetype is most
desirable under various circumstances. For a discussion on how a topology can
be constructed dynamically, see [4,16].

Also, we focus on networks with no search/index or index/index redundancy.
The impact of search/search and update/update redundancies is mitigated by
the fact that a node processes only one copy of a duplicate search or update
message and discards the rest (see Section 2). In contrast, search/index and



