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PREFACE

These notes present a course of lectures given by the
author at the Division of Applied Mathematics, Brown University
during the second semester of the academic year 1975-1976.
They are based on a course, on the theory of the stability of
the motion, which the author gave at the Department of Mathe-
matics and Mechanics at the University of Leningrad during the
last several years, and on some recent publications by the
author.

The author is very grateful to Professor Jack K. Hale, and
members of the Division for their warm hospitality and useful
discussions. The author thanks Messrs. R. Malek~-Madani,

K. Lyons and N. Alikakos for their help in preparing the manu-
script, and Miss Sandra Spinacci for her meticulous typing.
The author is also grateful to R. Malek-Madani for his careful

proofreading of the material.

Yuri N. Bibikov

June, 1976 Providence, R. I.



Basic Notation

a) Generalities
R is the n-dimensional real space;
C is the n-dimensional complex space;
% 1is the set of integers;
Z is the set of non-negative integers;
N 1is the set of natural numbers;
m(nxm)

is the set of n x m matrices;

, - 9x
X = 3t

NF stands for "normal form";
NFIS stands for "normal form on invariant surface";
ONF stands for "quasi-normal form";

"x" denotes the end of a proof.

b) Vectors

If xER' or x €C then X = (Xyseee,X )7
Also, x = (x',x"), where x' = (xl,...,xm),

X" = (xpaqreeerx)) (1 2mo<n);
[1xl] = max ||

ey denotes the kth

q = (ql,...,qn), where e & Z+ (k = 1seessn)s

unit vector (0j;esssilsrsasis0);

la| = gy t ... toap;

in Chapter III q = (ql,...,qn,ﬁl,...,ah), where
qkrak (S Z+I Iql = ql t oewa 35;

p = (pl,...,pn), where Py ez (k=1,...,n),

’

Bl = Ipy| # «ev + Ip,



Vil

X <y xvye rR® or Cn) means that X, S Yy (k = 1lyas.,0);

X 1is the complex conjugate vector to x (this is not
applied to q);

vectors are always considered as columns, but for

convenience are written as rows.

c) Matrices

A e mnxn);

]

K (Kl,...,Kn) is the vector whose components are

eigenvalues of A;

Kl, (0]
J = OyrKys is the Jordan canonical form of A;
(0] Un,Kn

(Ark) = qpk + oo+ Ay Ky »
d) Power Series
By a (vector) power series, we mean (unless stated

on the contrary) an expression:
X(x) = (Xl(X),.-.,Xm(X)),

Xy (x) = %_ Xéq)xq, (k= 1;eee,m),
[q[=2

where

q
_ n (q) .
>4 X7 oeee x5, Xk € C;

X(x',x") denotes a power series with linear terms in x';



IX

§((x) denotes a majorant power series with respect
to X(x);
X(x) < Y(x) means that Y(x) majorizes X(x):
N Y L@
Xy = ) qu xq,
la|=2
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§0. Introduction

The principle problem of the local theory of ordinary
differential equations is the investication of the neighborhood
of a given solution. 1In general, in applications the right-
hand sides of differential equations are expanded in convergent
power series. The objective of this volume is to present an
approach to a solution of this problem based on the use of these
series.

We consider the case where the system at hand is autonomous
and the given solution corresponds to an equilibrium point.

Setting the origin at this point, we obtain a system

X = AX + X(x) (0.1)

where x is an n-vector, A is a constant matrix, n x n, the
co-ordinates Xk of X are convergent power series in powers
of KyreeerX gy without constant and linear terms. From the
point of view of applications the phase space should be real,
X(x) should be a real analytic function. 1In our presentation,
we will deal with both complex and real cases.

The most attention is paid to the stability problem and
to the closely connected problem of existence of periodic and
quasi-periodic solutions. In particular, the course presents
all results from the fundamental thesis of Liapunov [1],
concerning autonomous systems. More recent results [2-7] on

periodic and quasi-periodic solutions are presented too.



The general approach is based on ideas and methods developed
by Poincaré [8], Liapunov [1l], Dulac [91, Birkhoff [10],
Siegel [2], Kolmogorov [11], Malkin [12], Brjuno [13].

In practice, differential equations usually depend
analytically on a parameter ¢ which can be considered as
changing in a small neighborhood of the origin in ®R™. This
case can also be included into the considered case by adding
to the system the new equation ¢ = 0 and obtaining a
n+l-dimensional system (0.1). 1In §7 this method is used in
one particular case. In the same fashion the neighborhood of
a periodic solution of a periodic time dependent system can be
investigated (see Appendix or §11 in [13]).

For an understanding of the text, it is sufficient to know
the foundations of the theory of functions of several complex

variables in depth similar to the exposition in Chapter II of

monograph [14].



CHAPTER I

ANALYTIC FAMILIES OF SOLUTIONS

§l. Auxiliary Lemma

Consider the function X(R): c® -~ Gm, given by

gt = %_ Xéq)xq, k=1,...,m) (1.1)
lal=2

(see list of notations) which we shall call a vector homo-

geneous polynomial (v.h.p) of order ¢. Every v.h.p. can be

defined by the set of its coefficients Xéq) written in a

certain order. We order the coefficients as follows: (k,,qy)
precedes (k*,q*) if and only if the first non-zero difference

*

kK = ky, q; - ql*,...,q; - q,, 1is positive. This order will
be called canonical. Under canonical order the space ®(&,m,n)
of v.h.p. of order § can be identified with the N-dimensional
complex vector space CN, N = N(2,m,n).

Consider a linear operator L(%,m,n): @&(&,m,n) > &(L,m,n),

defined by

() _ax® Bx (%)

9x (L5

LX
where A € wt(nx"), B € m(mxm).

Lemma l.l. The eigenvalues Aj (3 =1,...,N) of the

operator L(&,m,n) are given by the formula:



Ay = (grk) = Ay (k =1,.c.,m; |g| = 2), (1.3)

where (g,k) 1is the scalar product given by O T SY
Kyreeerky being eigenvalues of matrix A; Al""’Am being

eigenvalues of matrix B.

Proof. ILet h(x) be a non-trivial v.h.p., S & m{nxn)'

T € mﬁmxm) are non-singular matrices and set
h(x) = Tg(y), x = Sy.
We have:

th = 7 22 (y)s™tax - BIg(y). (1.4)

LS

Consider the equation for the definition of the eigenvalues of

operator L:
Lh = Ah,

which by virtue of (1.4) coincides with

=9 _
3 sThasy - T lBrg(y) = Ag(y).

Hence, eigenvalues of I are the same as those of L' :



) _ _
ke 8 __ng s tasx - 77 lppx (),

Let S,T be such that Jl = S_lAS, J2 = T_lBT are lower
triangular Jordan canonical matrices with non-diagonal elements
Oy k = 2,.004n), Ty k =2,...,m) respectively.

Now, we are looking for the matrix 2z € W#NXN) of the
operator L*. Setting L*h = f, we observe

n 29
£, (x) = 2 Ix, (KiXitoixs 4) = AMh - Th o, (k= 1,...,m),

i=1 bl

hence coefficients of f are of the form

k
n (g-e, +e.)
(q) _ _ (q) i-1774 (q)
£.70 = Hak) = A dh 4 i£2(1+qi)0ihk - Tl
_ . .th . .
where e; = (0pessjlieea.0) is the i unit vector. Since we

use the canonical order, this implies that 2 1is a lower
triangular matrix with numbers Aj = (g,k) - Kk (k = 1,666 7m;

lg| = &) at the diagonal. x

Corollary. Consider the partial differential equation:

oV _
3% AX = U(x) (1-+:5)
where x € Cn, A € Wﬂnxn), U(x) 1is a scalar quadratic form.

An operator in the left-hand side of (1.5) is L(2,n,n) with

B = 0. By Lemma l.1 its eigenvalues are Ky + Kj (k, J=1,...,n).



Therefore, if

K + Kj #0, (k,j=1,...,n) (1.6)

then the equation (1.5) has unique solution V(x) which is a

quadratic form.

§2. Normal Form
©

Consider a vector power series X = 2 X(l), X(Q) being
v.h.p (l.1). If there exists a neighborﬁ;id of the origin
where all coordinate series are (absolutely) convergent then
we say that series X(x) 1is convergent. If there is no
assertion of the convergence of a series then we say that X(x)
is a formal series (calculus of formal power-series is
described in [14], Ch. I, §1).

Consider two formal systems of ordinary differential

equations

Ax + X(x) (2.1)

X
Il

and

%3
]

Ay + Y(y), (242)

where X,Y are formal power-series.



Definition 2.1l. We say that systems (2.1) and (2.2) are

formally equivalent if there exists a change of variables:

x =y + h(y) (2. 3)

where h(y) is a formal power series, which reduces (2.1) to

(2:2) »

Definition 2.2. If X,Y,h in Definition 2.1 are convergent

series, then we say that systems (2.1) and (2.2) are analytically
equivalent.
et ¢ = (Kl,...,Kn) be the vector whose co-coordinates

are eigenvalues of matrix A.
Theorem 2.1. If
(@) =k #0  (k=1,.00n; |g| 2 2), (2.4)

then system (2.1) is formally equivalent to any system (2.2)

and h{y) in (2.3) is uniquely determined.

pxoof. Differentiating (2.3) with respect to t and
taking into account (2.1l) and (2.2) we obtain
oh oh
E)

— - Ah = X(y+h) - — Y - Y. 2.5
aYAy A (y+h) ¥ ( )



8

o

Represent h as Z h(z), where h(z) is a v.h.p. of order g.
2=2

Then we have from (2.5):

oh (%)

D Ay - an® - W) @)y 0y )

(2.6)
(£ = 2,3,004)

where i < £, j < &; k < &. Hence for & = 2 the right-hand

part of (2.6) is a known v.h.p. and in general, if

(2-1)

h(2),...,h are known, then the right-hand part of (2.6)

is known too. By Lemma 1.l the eigenvalues of the operator of

the left-hand part are (q,c) - « (k =1,...,h; |g] = &) and

p ()

kl

they are not zerxo by (2.4). Hence all are uniquely

determined. x

Corollary. If (2.4) holds then the system (2.1) is

formally equivalent to its linear approximation

Yy = Ay. (2.7)

Note that condition (2.4) is not necessary for (2.1) and (2.7)
to be formally equivalent.

Suppose now that (2.4) does not hold. Then some equations
of (2.6) can be unsolvable. This means that system (2.1) is
not formally equivalent to any system (2.2). However, since
equations (2.6) can still be solvable, there exist systems (2.2)

which are formally equivalent to (2.1).



We seek the simplest form of such a system. It is convenient
to assume that A = J is a Jordan canonical matrix. This can be

achieved by means of linear non-singular change of variables.

So we consider a system

x = Jx + X(x). (2.8)
Equation (2.6) reduces to
an 4! (2) (2) (1) o (3) (k) (2)
Crant Jh = £ p't v xWy -y
(2.9)

(i< 2,3 <8 Kg2)e

B (2)

Using the canonical order of the coefficients of we

obtain the matrix of operator in the left-hand side of (2.9)

in lower triangular form with numbers (q,k) - Ky
(k = L,eneptty |G] = g) &t the diagonal (see the proof of
Lemma 1l.1). Hence the coefficient héq) of v.h.p. h(l) is
determined by the equation

[(qre) - e In T = gD - v, (2.10)

where géq) can be considered as a known number because it

depends on coefficients of h(l), where i < &, and on the

preceding coefficients in a canonical order of h(g). If



