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Preface

This book is based on my lectures on quasiregular mappings in the euclidean n-
space R"™ given at the University of Helsinki in 1986. It is assumed that the reader
is familiar with basic real analysis or with some basic facts about quasiconformal
mappings (an excellent reference is pp. 1-50 in J. Viisdla’s book [V7]), but otherwise
I have tried to make the text as self-contained and easily accessible as possible. For
the reader’s convenience and for the sake of easy reference I have included without
proof most of those results from [V7] which will be exploited here. I have also included
a brief review of those properties of Mébius transformations in R™ which will be used
throughout.

In order to make the text more useful for students I have included nearly a
hundred exercises, which are scattered throughout the book. They are of varying
difficulty, with hints for solution provided for some. For specialists in the field I have
included a list of open problems at the end of the book. The bibliography contains,
besides references, additional items which are closely related to the subject matter of
this book.

From its beginning twenty years ago the subject of quasiregular mappings in n—
space has developed into an extensive mathematical theory having connections with
PDE theory, calculus of variations, non-linear potential theory, and especially geo-
metric function theory and quasiconformal mapping theory. Excellent contributions
to this subject have been made, in particular, by the following five mathematicians:

F. W. Gehring, O. Martio, Yu. G. Reshetnyak, S. Rickman, and J. Viisala.

The subject matter of this book relies heavily on their work. I am indebted to them
not only for their scientific contributions but also for the help and advice they have
given me during the various stages of my work. It was O. Martio who suggested I
start writing this book. The writing was made possible by a research fellowship of the

Academy of Finland, which I held in 1979-85. A draft for the text was finished in the
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fall of 1982 during my stay at the Mittag—Leffler Institute in Sweden.

The following mathematicians have provided their generous help by checking var-
ious versions of the manuscript, pointing out errors, and contributing corrections:
J. Heinonen, G. D. Anderson, and M. K. Vamanamurthy. Useful remarks were also
made by J. Ferrand and P. Jarvi. At the final stage I have had the good fortune to
work with J. Kankaanpai, who prepared the final version of the text using the TEX
system of D. E. Knuth and improved the text in various ways. The previewer pro-
gram for TgX written by A. Hohti was very helpful in the course of this project. The
work of Kankaanpaa was supported by a grant of the Academy of Finland. Hohti and

O. Kanerva have provided their generous assistance in the use of the TEX system.

Helsinki
October 1987

Matti Vuorinen



Introduction

Quasiconformal and quasiregular mappings in R™ are natural generalizations of
conformal and analytic functions of one complex variable, respectively. In the two—
dimensional case these mappings were introduced by H. Grotzsch [GRC)] in 1928 and
the higher-dimensional case was first studied by M. A. Lavrent’ev [LAV] in 1938.
Far-reaching results were obtained also by O. Teichmiiller [TE] and L. V. Ahlfors
[A1]. The systematic study of quasiconformal mappings in R™ was begun by F. W.
Gehring [G1] and J. Viisild [V1] in 1961, and the study of quasiregular mappings by
Yu. G. Reshetnyak in 1966 [R1]. In a highly significant series of papers published in
1966-69 Reshetnyak proved the fundamental properties of quasiregular mappings by
exploiting tools from differential geometry, non-linear PDE theory, and the theory of
Sobolev spaces.

In 1969-72 O. Martio, S. Rickman and J. Viisala ((MRV1]-[MRV3|, [V8]) gave
a second approach to the theory of quasiregular mappings which was based on some
results of Reshetnyak, most notably on the fact that a non—constant quasiregular
mapping is discrete and open. On the other hand, their approach made use of tools
from the theory of quasiconformal mappings, such as curve families and moduli of
curve families. The extremal length and modulus of a curve family were introduced
by L. V. Ahlfors and A. Beurling in their celebrated paper [AB] on conformal invariants
in 1950.

A third approach was suggested by B. Bojarski and T. Iwaniec [BI2] in 1983.
Their methods are real analytic in nature and largely independent of Reshetnyak’s
work.

In this book a fourth approach is suggested, which is a ramification of the curve
family method in [MRV1]-[MRV3] and in which conformal invariants play a central
role. Each of the above three approaches yields a theory covering the whole spectrum of
results of the theory of quasiregular mappings. So far the fourth approach of this book,
introduced by the author in [VU10]-[VU13] has been applied mainly to distortion
theory. This work has been continued in [AVV1], [AVV2], [FV], [LEVU], where some
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quantitative distortion theorems were discovered. These papers also include results
which are sharp as the maximal dilatation K approaches 1. Perhaps surprisingly it
also turned out in [AVV1] that to a considerable degree a distortion theory can be
developed independently of the dimension n .

In short, this fourth approach consists of the following. In a domain G in R"
one studies two conformal invariants A;(z,y) and p,(z,y) associated with a pair of
points z and y in G . These invariants were apparently first introduced by J. Ferrand
[LF2] in 1973 and I. S. Gal [GAL] in 1960, respectively. The systematic application
of these invariants was begun by the author in a recent series of papers [VU10]-
[VU13]. By their definitions, Ag(z,y) and pg(z,y) are solutions of certain extremal
problems associated with the moduli of some curve families. To derive distortion
theorems exploiting A, and pu. we require two things:

(a) the quasiinvariance of moduli of curve families under quasiconformal and

quasiregular mappings ([MRV1]-[MRV3|),

(b) quantitative estimates for A, and p. in terms of “geometric quantities”.

For a general domain G in R"™ these invariants have no explicit expression. In
the particular case G = B™ such an expression is known for both A, and u., and
for G = R™\ {0} good two-sided estimates for the invariant A, will be obtained.
We then generalize these results for a wider class of domains. In the two—dimensional
case we can obtain the exact value of AR2\ {0} (z,y) if we use the solution of a classical
extremal problem of geometric function theory, the modulus problem of O. Teichmiiller
[KU, Ch. V].

This book is divided into four chapters. Chapter I deals with geometric prelim-
inaries, including a discussion of Moébius transformations. In Chapter II we study
certain conformal invariants and apply these results in Chapter III to obtain distor-
tion theorems, the main theme of this book. The final part, Chapter IV, is a brief

discussion of some boundary properties of quasiconformal mappings.



A survey of quasiregular mappings

The goal of this survey is to give the reader a brief overview of the theory of
quasiconformal (qc) and quasiregular (qr) mappings and of some related topics. We
shall also try to indicate the many ways in which the classical function theory of one
complex variable (CFT) is related to quasiregular mapping theory (QRT) in R™ as
well as to point out some differences between CFT and QRT. This survey deals chiefly
with results not discussed elsewhere in the book.

For a general orientation the reader is urged to read some of the existing excellent
surveys [A4], [L1], [L2], [BAM], [G4], [G8]-[G10], [I], and [V10], of which the first three
deal with the two—dimensional case and the others the multidimensional case. Several
open problems are listed in the surveys of A. Baernstein and J. Manfredi [BAM], F. W.
Gehring [G9], and J. Viisila [V10].

1. Foundations. In his pioneering papers [R1]-[R10], in which were laid the
foundations of QRT, Yu. G. Reshetnyak successfully combined the powerful analytic
machinery of PDE’s in the sense of Sobolev with some geometric ideas from CFT.
Reshetnyak showed that the basic properties of qr mappings can be derived from the
properties of the function uf(z) = log|f(x)|, where f is qr. He proved that uy
satisfies a non-linear elliptic PDE which for n = 2 is linear and coincides with the
Laplace equation. It follows from the work of J. Moser [MOS], F. John — L. Nirenberg,
and J. Serrin [SE] that the solutions of this equation satisfy the Harnack inequality in
{z:ug(2) >0} . Note that if f is analytic, then log |f(2)| has a similar role in CFT.
Obviously only a part of CFT can be carried over to QRT: for instance power series

expansions and the Riemann mapping theorem have no n—dimensional counterpart.

2. Quasiconformal balls. By Riemann’s mapping theorem a simply—con-
nected plane domain with more than one boundary point can be mapped conformally
onto the unit disk B? . Liouville’s theorem says that the only conformal mappings in

R™, n > 3, are the Mobius transformations. Thus Riemann’s mapping theorem has
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no counterpart in R™ when n > 3: since Mdbius transformations preserve spheres,
the unit ball B™ in R" can be mapped conformally only onto another ball or a half-
space. A quasiconformal counterpart of the Riemann mapping theorem is also false:
for n > 3 there are Jordan domains in R"™ homeomorphic to B™ which cannot be
mapped quasiconformally onto B™ although their complements can be so mapped.
Also, the unit ball B™, n > 3, can be mapped quasiconformally onto a domain with
non-accessible boundary points, as shown by Gehring and Vaisild in [GV1]. This fact
shows that for each n > 3 the quasiconformal mappings in R™ constitute a class of

mappings substantially larger than the class of Mobius transformations.

3. Topological properties. A basic fact from CFT is that a non—constant
analytic function is discrete (i.e. point-inverses f~!(y) are discrete sets if f analytic)
and open (i.e. fA is open whenever f is analytic and A is open). By Reshetnyak’s
fundamental work a similar result holds in QRT. Next let By denote the set of all
points where f fails to be a local homeomorphism. In CFT it is a basic fact that By
is a discrete set if f is non—constant and analytic. A topological difference between
the cases n = 2 and n > 3 is that By is never discreteif f isqrin R™, n > 3, and
By # 0. By a result of A. V. Chernavskil dimBy =dim fBf <n—-2 if f: G —> R"
(G a domain in R™) is discrete and open ([CHEL|, [CHEZ2|, [V5]). Also the metric
properties are different: if n =2 and f is analytic, then cap By =0, while if n >3
and f is qr in R™, then either By = @ or cap By > 0 (for the definition of the
capacity see Section 7; see also [R10], [MR2], [S2]).

By a result of S. Stoilow a qr mapping f of B? onto a domain D can be rep-
resented as f = go h, where h is a qc mapping of B? onto itself and g is an
analytic function ([LV2]). Thus the powerful two—dimensional arsenal of CFT is ap-
plicable to the “analytic part” of f, greatly facilitating the study of two—dimensional
qr mappings. No such result is known for the multidimensional case.

Another result which is known only for the dimension n = 2 is the powerful exis-
tence theorem for plane quasiconformal mappings (cf. [LV2]). In the multidimensional
case there is no general existence theorem and all examples of qc and qr mappings
known to the author are based on direct constructions. In the qc case several ex-
amples are given in [GV1]. In the gr case a basic mapping is the winding mapping,
given in the cylindrical coordinates (r,p,2) by (r,p,z) — (r,kp,2z), k a positive
integer [MRV1]. An important example of a qr mapping is the so called Zorich map-
ping ([ZO1], [MSR1]) and its various generalizations due to Rickman (cf. e.g. [RI11]).
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Additional examples are given in [R12, pp. 27-32|, [MSR2], and [MSR3]. One can also

construct new qc (qr) mappings by composing qc (qr) mappings.

4. Quasiconformality versus Lipschitz and Holder maps. A homeomor-
phism f: G — fG, G C R", is said to be K—qc if

(*) M(T)/K < M(JT) < K M(T)

for all curve families T in G where M(T') is the modulus of T (see Section 5 be-
low). This definition is somewhat implicit because the concept of modulus is rather

complicated. To clarify the geometric consequences of (%) let us point out that

= limsu __—|f(1:)—f(z)| z—z|l=r=|y—¢ n
H(z, /) = limsup{ (7= e~ el =r =y~ al | < d(n, K)

for all £ € G, where d(n,K) < oo depends only on n and K. A well-known
property of conformal mappings can be expressed by stating that H(z,f) = 1 for
K =1 (while, unfortunately, d(n,K) /1 as K — 1 for n > 3, cf. p. 193).
A homeomorphism f: G — fG satisfying
|z —yl/L < [f(z) — f(y)| < L|z — y|
for all z,y € G, is called L-bilipschitz. It is easy to show that L-bilipschitz maps
are L2("=1)_qc. But the converse is false. The standard counterexample is the qc
radial stretching z — |z|*"'z, z € B™, a € (0,1), which is not bilipschitz. All qc
mappings are, however, locally Hélder continuous; e.g., if f: B® — B™ is K—qc, then

for |z|, |yl < 3
|f(z) — f(¥)| < A(n,K) |z —y|*, a= K1/(1-n) ,

where A(n,K) depends only on n and K . For details see Section 11 below.

Let B, QC,and X denote the classes of all bilipschitz, qc, and locally Holder
continuous mappings. By what was said above the inclusions B ¢ QC C ¥ hold,
where the first inclusion is strict. Simple examples can be constructed to show that
also the second inclusion is strict.

Many fundamental features of qc mappings are related to the strictness of the
inclusion B C QC . For instance, one can construct qc mappings such that the image
of a segment is not even locally rectifiable and such that the Hausdorff dimension of
a set is different from the Hausdorff dimension of its image ([GV2]).

The Holder continuity of gqc mappings on the boundary of the domain of definition
has been thoroughly investigated by R. Nédkki and B. Palka in a series of papers (see
e.g. [NP]).
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5. LP—integrability. A K-—-qc mapping has the property that its partial
derivatives are locally L™-integrable. Moreover, these partial derivatives are even
locally LP-integrable for some p = p(n,K) > n. This was proved by B. Bojarski
for n = 2 and generalized to the multidimensional case by F. W. Gehring [G5]. The
method of proof in [G5], which makes use of so—called reverse Holder inequalities, has
found several applications to the calculus of variations and to PDE theory (|GIA],
[STR1], [STR2|). Some estimates dealing with the case K — 1 were given by Yu. G.
Reshetnyak in [R13] (see also [GUR]). In connection with qr mappings the integrability
has also been discussed by B. Bojarski and T. Iwaniec [BI2] and O. Martio [M2].

6. Stability theory. The stability theory of K—qc and K—-qr mappings in
R"™ in the sense of this book deals with the quantitative description of the behavior of
these mappings when K — 1. Roughly speaking, the expectation is that the mapping
should become more or less like a conformal mapping under this passage to the limit.
By Liouville’s classical theorem the two cases n > 3 and n > 2 are substantially
different, and we shall therefore consider them separately.

Case A. n > 3. Liouville’s classical theorem, which was mentioned above in con-
nection with quasiconformal balls, requires that the mappings be sufficiently smooth
(C? is enough). By deep results of F. W. Gehring [G2] and Yu. G. Reshetnyak (|R3],
R13]) the differentiability assumption can be replaced by the requirement that the
mapping be 1-qc or even 1-qr. Recently a different proof was given by B. Bojarski
and T. Iwaniec [BIl]. Next, as shown by Reshetnyak ([R3], [R11], [R13]), one can
show that as K — 1 any K —qr mapping must approach a Mébius transformation.
For the exact statement of these results the reader is referred to [R13]. The methods
of [R13] involve normal family arguments. Unfortunately the “speed” with which the
convergence to Mobius transformations takes place as K — 1 is usually only qualita-
tively defined and no quantitative estimate for the “speed” in terms of K and n are
known. Additional results have been proved by A. P. Kopylov [KOJ, J. Sarvas [S3],
V. L. Semenov [SEM1], D. A. Trotsenko [TR], and others.

Case B. n > 2. The paucity of such distortion theorems for K—-qc or K—qr
mappings in R™, which are asymptotically sharp as K — 1 and provide quantitative
distortion estimates, may be startling when compared to the rich qualitative theory
described above in Case A. This state of affairs is due partly to the fact that to
prove such results one needs to find sharp estimates for certain little-known special

functions. Several results with explicit bounds dealing with the case K — 1 have
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been proved by V. I. Semenov in several papers (e.g. [SEM1|, [SEM2]). Some other
distortion theorems of this kind together with associated estimates of special functions
were developed in [VU10], [VU11], [AVV1]-[AVV3], [FV].

A survey including some two—dimensional results of this kind is given in [HEL].

See also the important paper [AG] of S. Agard.

7. Dirichlet integral minimizing property. Let G be a domain in R? and
v: G — R harmonic. For a domain D C G with D C G let

(D) ={u: G- R :uldD =v|dD, v € C*G)}.

A well-known extremal property of the class of harmonic functions, the Dirichlet
principle, states that they minimize the Dirichlet integral [T, pp. 9-14]. In the above

notation this means that

/|Vv|2dm——— inf /|Vu|2dm.
D ue?, (D) Jp

Analogous Dirichlet integral minimizing properties hold as well for the solutions of the
non-linear elliptic PDE’s which arise in connection with qr mappings. This important
fact was proved by Yu. G. Reshetnyak [R5]. In [MIK3] V. M. Miklyukov continued
this research and studied subsolutions of these PDE’s.

In a series of papers S. Granlund, P. Lindqvist, and O. Martio have considerably
extended these results ((GLM1]-[GLM3], [LI1], [LIM], [M6]). They have also found
a unified approach to some function-theoretic parts of QRT including, in particular,
the harmonic measure. See also [HMA]. Further results were obtained by J. Heinonen

and T. Kilpeldinen.

8. Value distribution theory. In 1967 V. A. Zorich [ZO1] asked whether
Picard’s theorem holds for spatial qr mappings and whether the value distribution
theory of Nevanlinna [NE] has a counterpart in this context. These questions have
been answered by S. Rickman in a series of papers [RI3]-[RI11], the main results being
reviewed in [RI6] and [RI9]. Additional results appear in [MATR| as well as in [PE1].
An analogue of Picard’s theorem was published in [RI4]. One of the methods used
in [RI4] is a two—constants theorem for qr mappings (analogous to the two—constants
theorem of CFT [NE|), which Rickman derives from an estimate for the solutions of
certain non-linear elliptic PDE’s due to V. G. Maz’ya [MAZ1]. An alternative proof

which only makes use of curve family methods is given in [RI9)].
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9. Special classes of domains. The standard domain, in which most of the
CFT is developed, is the unit disk. During the past ten years an increasing number
of papers have been published in which function-theory on a more general domain
arises in a natural way. In the early 1960’s two highly significant studies of this
kind appeared in quite different contexts authored by L. V. Ahlfors and F. John,
respectively. Ahlfors studied domains bounded by quasicircles, i. e. images of the
usual circle under a qc mapping of R?, and found remarkable properties of these
domains. In a paper related to elasticity properties of materials John introduced a
class of domains, nowadays known as John domains.

The importance of John domains was pointed out by Yu. G. Reshetnyak [R11]
in connection with injectivity studies of qr mappings. This direction of research was
then continued by O. Martio and J. Sarvas [MS2], who also introduced the important
class of uniform domains. Uniform domains have found applications in the study
of extension operators of function spaces, e. g. in P. Jones’ work ([J1], [J2]) as well
as elsewhere ([GO|, [GM1], [TR], [V12]). Other related classes of domains are QED
domains [GM1] and p—uniform domains ([VU10], [HVU]). The interrelation between
some of these classes of domains has been studied by F. W. Gehring in [G8] and [G10],
where also several characterizations of quasidisks are given.

Important results dealing with function spaces and their extension to a larger
domain have been proved by S. K. Vodop’yanov, V. M. Gol’dstein, and Yu. G. Reshet-

nyak in [VGR], where additional references can be found.

10. Concluding remarks. The above remarks cover only a part of the existing
QRT, and a wider overview can be obtained from the surveys of A. Baernstein and J.
Manfredi [BAM] and F. W. Gehring [G9]. We shall conclude this survey by mentioning
some directions of active research close to QRT.

Recently qc and qr mappings have appeared in stochastic analysis in B. @ksendal’s
work [@K1] and in the theory of manifolds (M. Gromov (GROM]). P. Pansu [PA]
has studied quasiconformality in connection with Heisenberg groups, in which he has
exploited among other methods the conformal invariant A, of J. Ferrand [LF2]. Qc
mappings also arise in a natural way in the study of BMO functions (H. M. Reimann—
T. Rychener [REIR|, K. Astala-F. W. Gehring [ASTG], M. Zinsmeister [ZI]).

In a series of papers V. M. Miklyukov [MIK4] has shown how the extremal length
method can be used to study minimal surfaces. Extremely important are the partly

topological results connecting geometric topology and quasiconformality, which were
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proved by D. Sullivan, P. Tukia, J. Vaisala, J. Luukkainen, and others. Discrete
groups and quasiconformality have been studied in an important series of papers
by P. Tukia ([TU1], [TU2|) and B. N. Apanasov, O. Martio and U. Srebro ([MSR1]-
[MSR3]), F. W. Gehring and G. Martin [GMA]. Let us point out that we have confined
ourselves here (and also elsewhere in this book) to the case of n—space, n > 2. For
n = 2 the reader may consult the excellent surveys of O. Lehto [L1] and [L2] as well as
his new book [L3]. The standard references for n = 2 are the books by L. V. Ahlfors
[A2], H. P. Kiinzi [KU], and O. Lehto and K. I. Virtanen [LV2].

The variety of these results indicates the many ways in which qc and qr mappings
arise in mathematics. Many fascinating connections between QRT and other parts of

mathematics remain yet to be discovered.



Notation and terminology

The standard unit vectors in the euclidean space R™, n > 2, are denoted by
€1,..-,6n. A point z in R™ can be represented as a vector (zj,...,z,) or as a
sum of vectors £ = r,e; + ...+ z,€e, . For z,y € R™ the inner product is defined
by z-y = Y -, z;yi. The length (norm) of z € R" is |z| = (z-z)'/%. The ball
centered at z € R™ with radius r >0 is B"(z,r) = {y € R™:|z—y| <r} and the
sphere with the same center and radius is S"~!(z,r) = {yeR": |z —y|=r}. We

employ the abbreviations

B™(r) = B*(0,r), B"=B"(1),
§*i(r) =s""1(0,r), S*=8"7"1(1).

The n—dimensional volume of B™ is denoted by 1, and the (n—1)-dimensional
surface area of S"™! by w,_;. For z,y € R" let [z,y|={(1—¢t)z+ty:0<t <1}
and for z € R™\ {0} let [z,00] = {sz:s > 1}U {oo}. The Mébius space R" =
R"™ U {oo} is the one-point compactification of R™. The Mobius space, equipped
with the spherical chordal distance ¢, is a metric space. In addition to (R",] |)
and (f{",q) we shall require some other metric spaces such as the hyperbolic spaces
(B™, pg~) and (H",pg.) as well as (G,k;) where G C R™ is a domain and kg
is the quasihyperbolic metric on G.

For a metric space (X,d) let By(y,r) ={z€ X :d(z,y) <r}. If ABCX
are non—-empty let d(A,B) = inf{d(z,y) :z € A,y € B} and d(A) = sup{d(z,y) :
r,y€ A}. For z € X set d(z,A) =d({z},A).

The set of natural numbers 0,1,2,... is denoted by IN and the set of all integers
by Z . The set of complex numbers is denoted by C. We often identify C = R2.

For aset A in R™ or R"™ the topological operations A (closure), dA (bound-
ary), R"\ A (complement) are always taken with respect to R™. Thus the domain
R™\ {0} has two boundary points, 0 and oo, and the half-space H* = {z € R":
z, > 0} has oo as a boundary point. A domain is an open connected non-empty
set. A neighborhood of a point is a domain containing it. The notation f: D — D'

usually includes the assumption that D and D’ are domains in R".
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Let G be an open set in R"™. A mapping f: G — R™ is differentiable at z € G
if there exists a linear mapping f'(z): R™ — R™, called the derivative of f at =z,

such that
f(z+h) = f(z) + f'(z)h + |k]e(z, h)

where €(z,h) — 0 as h — 0. The Jacobian determinant of f at z is denoted by
J¢(z) . Assume next that n = m and that all the partial derivatives exist at z € G
(thus f need not be differentiable at z ). In this case one defines the formal derivative
of f=(f1,-.-,fn) at z as the linear map defined by

af; af; .
f'(z)e; = V fi(z) = (a;(x)"“’ai(x)) . i=1,...,n.

For an open set D C R™ and for k € N, C¥(D) denotes the set of all those
continuous real-valued functions of D whose partial derivatives of order p < k exist
and are continuous.

The n-dimensional volume of the unit ball m,(B") is denoted by {2, and the

(n — 1)-dimensional surface area of S®~! by w,_;. Then w,_; = nf), and

an/2

r(1+ %n)

n =
for all n =2,3,... where T' stands for Euler’s gamma function. For k =1,2,... we
have by the well-known properties of the gamma function [AS, 6.1]

27|.k 2k+17|.k
VLTI R T2k

Algorithms suitable for numerical computation of I'(s) are given in [AS, Ch. 6] and
in [PFTV, Ch. 6|.

We next give a list of the additional notation used.

H" =R%} the Poincaré half-space 1

P(a,t) an (n — 1)-dimensional hyperplane 2

M the group of Mobius transformations 3

O(n) the group of orthogonal mappings 3

M the group of sense-preserving Mébius transformations 3
Z ? a generic point of {z € R"™!:z,,, =0} 4

n(z), m2(z) the stereographic projection 4, 6



Lip(f)

12

p(z,y)
J(z,y|
D(z,M)
Jp(z,v)
kp(z,y)
Dg(z, M)
sg(z,y)
px(4,1)
vl

£(v)

M, ('), M(T)
A(E,F;G)
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the spherical (chordal) distance between =z and y 4,5

the antipodal (diametrically opposite) point 5

the spherical ball 7
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