Third Edition

V. J. Calderbank




Programming in

FORTRAN

Third edition

V. J. Calderbank

Information Technology Division, UKAEA
Culham Laboratory

)

London New York
CHAPMAN AND HALL



First published in 1969 by

Chapman and Hall Ltd

11 New Fetter Lane, London EC4P 4EE
Published in the USA by

Chapman and Hall

29 West 35th Street, New York NY 10001
Second edition 1983

Third edition 1989

© 19691983 | 1989 V.J. Calderbank

Typeset in 10/12 Times by

Colset Private Ltd, Singapore
Printed in Great Britain by

T. J. Press Ltd, Padstow, Cornwall

ISBN 0 412 30500 3 (hardback)
0 412 30510 0 (paperback)

This title is available in both hardback and paperback editions. The
paperback edition is sold subject to the condition that it shall not, by
way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior consent in any form of
binding or cover other than that in which it is published and without
a similar condition including this condition being imposed on the
subsequent purchaser.

All rights reserved. No part of this book may be reprinted or
reproduced, or utilized in any form or by any electronic, mechanical
or other means, now known or hereafter invented, including
photocopying and recording, or in any information storage and
retrieval system, without permission in writing from the publisher.

British Library Cataloguing in Publication Data

Calderbank, Valerie J. (Valerie Joyce), 1944-
Programming for FORTRAN. — 3rd ed.
1. Computer systems. Programming languages
: FORTRAN 77 language

. Title II. Calderbank, Valerie J.
(Valerie Joyce), 1944-. Course on
programming on FORTRAN
005.13'3

ISBN 0-412-30500-3
ISBN 0-412-30510-0 Pbk

Library of Congress Cataloging in Publication Data

Calderbank, Valerie Joyce.
Programming in FORTRAN / V.J. Calderbank. — 3rd ed.
p. cm.
Rev. ed. of: A course on programming in FORTRAN. 2nd ed.,
rev. to incorporate FORTRAN 77. c1983.
Includes index.
ISBN 0-412-30500-3. ISBN 0-412-30510-0 (pbk.)
1. FORTRAN (Computer program language) [. Calderbank,

Valerie Joyce. Course on programming in FORTRAN. II. Title.
QA76.73.F25C35 1989
005.13'3—dc19 88-25964

CIP




Programming in FORTRAN



CHAPMAN AND HALL COMPUTING SERIES

COMPUTER OPERATING SYSTEMS
For micros, minis and mainframes

2nd edition

David Barron

MICROCOMPUTER GRAPICS
Michael Batty

THE PICK OPERATING SYSTEM
Malcolm Bull

PROGRAMMING IN FORTRAN
3rd edition
V.J. Calderbank

EXPERT SYSTEMS
Principles and case studies
2nd edition

Edited by Richard Forsyth

MACHINE LEARNING
Principles and techniques
Edited by Richard Forsyth

EXPERT SYSTEMS
Knowledge, uncertainty and decision
Ian Graham and Peter Llewelyn Jones

COMPUTER GRAPHICS AND APPLICATIONS
Dennis Harris

ARTIFICIAL INTELLIGENCE AND HUMAN
LEARNING

Intelligent computer-aided instruction

Edited by John Self

ARTIFICIAL INTELLIGENCE
Principles and applications
Edited by Masoud Yazdani



Preface

During the eighteen years since this book was first published the success of
FORTRAN as a programming language has continued unabated. The
language was first standardized in 1966 by the American National Standards
Institute (ANSI) and this definition of the language was, by and large, the
subject of the first edition of the book. In 1977 the ANSI committee published
a revised standard definition of the language which became known as
ANSI 77 FORTRAN or simply FORTRAN 77 (see ANSI X3.9, 1978 for a
description of this). The second edition of this book was published at a time
when there was widespread interest in this language, but compilers for it were
not universally available. This edition therefore acted as a transition book
and described both FORTRAN 66 and FORTRAN 77 side by side. There is
now no doubt that almost all FORTRAN programmers today program in
FORTRAN 77, and interest in the old standard has largely died out. In fact,
the FORTRAN community is now looking forward to the finalization of the
ANSI standard for FORTRAN 8x which should appear in the next year. Many
new facilities are being added to the 8x standard and many features of the old
FORTRAN will be deprecated or become obsolete.

It is with all this in mind that this third edition has been written. First, it
seeks to teach FORTRAN 77 from scratch without reference to FORTRAN 66,
and therefore topics are introduced in a somewhat different order from the
way they were handled in the second edition. Second, it tries to push into the
background features of FORTRAN 77 which are undesirable, partly with the
intention of encouraging better programming techniques and partly with an
eye to the new 8x standard. Third, it tries to encourage the use of structured
programming techniques in the hope of fostering improved software
standards, particularly among the increasing army of D.I.Y. programmers
who are not computer professionals, but who nevertheless spend many man-
days programming personal computers or scientific workstations. It is for my
readers to determine whether I have succeeded in my aims.

I have many people to thank for help in the production of various editions
of this book. My special thanks must always go to Professor E. J. Burge,
Head of the Physics Department of Chelsea College, London, for giving
me the courage to write the first edition. Special thanks also to my family
for enabling me to spend the hours which are inevitably necessary in the



x Preface

production of a book of this kind. Thanks, of course, must go to the
numerous scientific colleagues, university lecturers, students and critics who
have contributed to what I hope is a FORTRAN text which has gradually
improved over the years. Last, but not least, I must thank my publishers
(Chapman and Hall) for their continuing confidence in me and for the many
hours of work which they have put into all three editions.

V. J. Calderbank

Information Technology Division
Culham Laboratory

1988



Contents

Preface

1 Fundamentals

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Basic computer concepts
Algorithms

Structured design

The FORTRAN language

Layout of FORTRAN programs

The PROGRAM and END statements
Statement classification

Variables and constants

Internal representation

1.10 Summary
Exercises 1

2 Construction of a simple FORTRAN program

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

Sequences

Simple input and output statements
Arithmetic expressions

Arithmetic assignment statements
The STOP statement

Compiling and running your program
Intrinsic functions

Summary

Exercises 2

3 Selections and other control statements

3.1
32
3.3
3.4

Introduction

The block-IF statement
Logical expressions

The logical IF statement

24

24
24
29
33
36
36
37
39
40

43

43
43
47
51



vi Contents

3.5 The GOTO statement 51
3.6 The arithmetic IF statement 54
3.7 The computed GOTO statement 55
3.8 The assigned GOTO statement 56
3.9 Summary 56
Exercises 3 57
4 Repetitions and arrays 59
4.1 Introduction 59
4.2 The DO statement 60
4.3 The CONTINUE statement 64
4.4 Conditional loops 65
4.5 Nested loops 66
4.6 Arrays and subscripts 69
4.7 Dimensioning arrays 70
4.8 The DIMENSION statement 76
4.9 A sorting program 76
4.10 Summary 77
Exercises 4 78
5 Types 80
5.1 Introduction 80
5.2 Type statements 80
5.3 Character type 82
5.4 Double precision type 90
5.5 Complex type 92
5.6 Logical type 93
5.7 The IMPLICIT statement 95
5.8 The PARAMETER statement 96
5.9 The DATA statement 97
5.10 Mixed mode arithmetic 99
5.11 Binary, octal and hexadecimal types 101
5.12 Summary 101
Exercises 5 102
6 Formatted I/O 104
6.1 Introduction 104
6.2 The FORMAT statement 108
6.3 The 1/0 list 109
6.4 Repetition factors 113

6.5 The implied DO statement 115



6.6
6.7
6.8
6.9

Contents

Format specifications

Scale factors

Run-time format statements
STOP and PAUSE

6.10 Summary
Exercises 6

7 Files

7.1
7:2
7.3
7.4
T3
7.6
7.7
7.8

Introduction

Control information specifiers REC, ERR, END and IOSTAT
OPEN and CLOSE

INQUIRE

Internal files

The ENDFILE statement

BACKSPACE and REWIND

Summary

Exercises 7

8 Functions and subroutines

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Introduction

The main program and the PROGRAM statement
Statement ordering

Intrinsic functions and the INTRINSIC statement

The statement function

The FUNCTION subprogram and RETURN

The SUBROUTINE subprogram and the CALL statement
The EXTERNAL statement

Adjustable dimensions

8.10 Multiple entry and return points
8.11 Summary
Exercises 8

9 The organization of store

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Introduction

Blank COMMON

Named COMMON

The BLOCK DATA subprogram
The SAVE statement

The EQUIVALENCE statement
Summary

Exercises 9

vii

116
127
128
129
130
131

133

133
134
136
139
142
145
145
148
149

151

151
152
153
154
155
157
161
165
167
170
173
174

176

176
178
182
184
185
187
189
190



viii Contents

Conclusion

Appendix A: Intrinsic funciions
Appendix B: Common character codes
Solutions to exercises

Index

192
194
198
200
231



Fundamentals

1.1 Basic computer concepts

The purpose of this book is to teach the reader to program a computer in the
FORTRAN programming language. It is not intended to discuss the way in
which a modern computer is constructed or operated. However, some
knowledge of the way a computer works is required before any attempt can
be made to program it, and therefore a brief introduction is given here.

Slow
secondary
store

Input Central Output
devices memory devices

A

Control
unit

Arithmetic
unit

FIG. 1.1 A schematic diagram of a typical computer system



2 Fundamentals

Computer architecture can vary greatly in detailed design but the basic
principle of most systems may be represented by the diagram in Fig. 1.1.
Instructions or data are entered into the computer via an input device and
stored in the central memory. The basic unit of memory is the binary digit (or
bit). For convenience, bits are grouped together in larger units called byzes
(typically 8 bits) and words (which are different sizes on different computers
but may typically be 8, 16, 32, 48 or 64 bits). Note that a computer word is a
collection of binary digits and as such is very different from a natural
language word which is a collection of characters. Natural language words
may be stored in computer words, however, using a numerical code to repre-
sent each character.

The position of a word or byte in computer memory is known as its
address. To clarify this with an everyday analogy, think of a computer’s
memory as a chest of drawers where each drawer is divided into, say, 16 com-
partments across its width. This is shown in the diagram of Fig. 1.2. Imagine
that each drawer is equivalent to a computer word and each compartment is
equivalent to a computer bit; then this chest of drawers represents a 16 bit
word memory (each of which may contain two 8 bit bytes).

If we number the drawers from O to 5 starting from the top, then the third
drawer down is at address 2, the fourth at address 3 and so on (this numbering
is chosen because computer memory is often addressed from 0 upwards).
Within the drawer, the compartments themselves are numbered from 0to 15,
starting from the right. This is equivalent to bit 0, bit 1 and so on in the
computer word.

Let us suppose that any compartment in this drawer is allowed to contain
either one item or nothing at all. Then this is analogous to a computer bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

W
G 2
)
3
d
s 4
5

Byte 1 Byte O

FIG. 1.2 A schematic representation of computer memory



Algorithms 3

which can hold the value 1 or 0 (often represented electronically by a current
being on or off).

All information, whether instructions or data, is held in the computer’s
memory in this way. Groups of binary digits can represent larger numbers, or
characters held in a coded numerical form. For example, one bit can only
hold the value 0 or 1, but two bits can represent 00, 01, 10 or 11 (this will be
described more fully when internal representation is discussed later).

Once data has been entered and stored in the computer’s memory, it may
be required to perform calculations on it. To do this, the data must be moved
from memory locations, along a data highway or high-speed bus to the
arithmetic unit which contains one or more accumulators or high-speed
working registers. Very fast computations may be carried out in these
registers and the results returned to memory along the bus. Computers vary
in the number of bits of information that can be carried along the bus in one
operation and in the number that can be held in the registers, e.g. there may
be an 8 bit bus and 16 bit registers; this basic architecture obviously affects
the speed of the machine.

Instructions to move data and perform calculations on it are held in the
memory in the form of a program and it is the control unit which controls and
interprets these instructions. It is able to access instructions stored sequen-
tially in the memory, decode them and initiate the appropriate action. The
arithmetic unit, control unit, registers and central memory together form the
central processor unit (CPU). To this are connected input/output devices
such as visual display units, teletypes and lineprinters, and storage devices
(such as magnetic tapes, discs and drums) known as secondary store or
backing store. All of these devices are collectively known as peripherals.

A typical modern scientific computer installation will provide a variety of
peripherals such as on-line terminals (teletypes and visual display units) for
both input and output, magnetic tapes, discs, drums, cassettes and cartridges
for storing programs and data, and output devices such as lineprinters and
graph plotters.

1.2 Algorithms

The CPU of any computer contains logic circuits which can themselves
perform simple basic instructions such as addition, subtraction, multiplica-
tion, division and so on. Thus a circuit may take as its input two 16 bit
numbers, say, and produce, by means of logic gates, one output which is the
sum of these two. More complex operations are performed by breaking them
down into logical sequences of these basic operations. So just as it is possible
to build a palace from a few basic ingredients such as bricks and mortar, so it
is possible to solve enormously complex problems using the basic instruction
set of a computer. But just as the architect has to provide instructions and
blueprints from which the palace can be built, so must the programmer



4 Fundamentals

provide instructions and diagrams from which a program can be written to
solve a particular problem. In computing and mathematics, a prescription
for solving a problem is generally called an a/gorithm whether or not it ulti-
mately will become a computer program.

There are many everyday examples of algorithms; a recipe for making a
cake is a set of instructions which when obeyed in sequence result in a cake.
Thus the recipe is an algorithm for performing this task. Another example
may be a list of directions to reach your home from your place of work, e.g.
turn left at the main exit, drive straight on for 2 miles, at the next T junction
turn right and so on. You may give these written instructions to any number
of colleagues, and if they are clear and unambiguous then they should all
ultimately arrive at your home. On the other hand, if they are ambiguous or
incorrect then your colleagues will lose their way or perhaps spend hours
driving around in circles. So it is with algorithms for computer programs. A
computer will obey, in a moronic way, the exact instructions that it is given.
This may result in the wrong answer or in the CPU looping for perhaps hours.

Let us consider algorithms in a little more detail by returning to the analogy
of achest of drawers introduced in the previous section. Suppose that the first
drawer contains one knife, the second drawer contains one fork and the third
drawer contains one spoon in each compartment, then the instructions to lay
one place setting on a table may be as follows:

Open drawer 0

Take a knife from compartment 0
Close drawer 0

Open drawer 1

Take a fork from compartment 0
Close drawer 1

Open drawer 2

Take a spoon from compartment O
Close drawer 2

Go to the table

Lay one knife, one fork and one spoon on the table

This algorithm may be repeated three more times to lay four place settings but
each time taking the knives, forks and spoons from a different compartment,
i.e. 1,2 and 3.

So this is an algorithm, but not one which can be directly converted into a
computer program. Consider now a more numerical algorithm to add two
numbers and print the result. This might read as follows:

Read the first number

Read the second number

Add the two numbers together
Print the result



Algorithms 5

This is obviously a simple but limited task that a computer could perform and
we shall see later how this becomes a FORTRAN program. It consists of a
sequence of four basic instructions and that is all. A slightly more powerful
algorithm might sum the squares of N numbers and print the result as
follows:

Read N
Set the ‘sum so far’ to zero
Repeat the following N times:
Read a number
Square it
Add the result to the ‘sum so far’

This algorithm spells out, in an English-like language, the primitive steps
which have to be performed to sum the squares of N numbers. It consists of
two basic constructs - elementary operations or commands which must be
obeyed in sequence (e.g. Square it, Add the result to the ‘sum so far’), and
repetitions which require a group of instructions to be performed repeatedly,
usually not for evermore, but until some condition becomes true (in this case,
until they have been obeyed N times).

It can be seen from this that algorithms can be written in a type of English
regardless of whether they are to be subsequently written as actual programs
for a machine to obey or not. Here we must make one of the first important
statements about how to write a computer program. Spend a long time
designing your algorithm before you make any attempt to program it. There
is a widely held view that the sooner you actually start programming, the
longer the program will take to develop.

Many programs do not work because the algorithms do not work in the
first place, just as your colleagues will get lost if you give them wrong direc-
tions. Only when you are sure that your design is right should you tackle the
separate problem of coding this in a computer language for input to a
computer.

So, to summarize, a computer is able to produce a solution to a particular
problem only if it is presented with a series of simple instructions which
will, when obeyed in a specific order, produce the desired result. This
sequence of instructions is referred to as a program; programs are collec-
tively termed computer software in contrast to the actual physical devices
which collectively form the hardware. The instructions which form a
program are loaded into the computer’s memory in an encoded form and
the control unit works sequentially through the instructions, decoding
and obeying them. In so doing, it may use data stored at other locations
in memory.



6 Fundamentals

1.3 Structured design

The algorithms in the preceding section illustrate the use of two important
elements in program design - sequences of elementary operations and repeti-
tions. A third important construct for writing algorithms is the selection.
Suppose we wish to calculate the income tax payable on a number of salaries
in the range £1 to £20 000. Suppose tax is to be calculated at a rate of 25% on
the first £750, 30% on the next £5000 and 45% on the remainder. Let us
suppose that the calculation is to end when a salary is found which is not in
the above range.

We shall approach the design of this algorithm using rop-down design.
That is, first of all we state the overall aim of the program which may be
represented by:

Calculate and print income taxes

We now break this down a bit further by defining the process ‘calculate and
print income taxes’; this is a repetition of ‘calculate tax’ and ‘print tax’ which
in turn are defined as follows:

Read salary

If the salary is between £1 and £20 000 then
Calculate tax
Print tax

else
xxxError - invalid salary

end if

The process ‘calculate tax’ may be further broken down into its basic tasks as
follows:

Calculate tax at 25% on the first £750
If the salary is greater than £750 then
Calculate tax at 30% on the next £5000
If the salary is greater than £5750 then
Calculate tax on the remainder at 45%
end if
end if

This example provides several illustrations of the selection which is of the
form ‘If this is true then do the following’ and may or may not have an alter-
native clause ‘else do the following’. The end of each ‘if’ clause is marked by a
corresponding ‘end if” for clarity.

These then are the basic logical elements which may be combined to form
an algorithm - sequences, selections and repetitions (also called loops or
iterations). Using these and top-down analysis, large and complicated
programs may be broken down into small manageable tasks, each of which



