EDWARD G, COFFMAN, JR.
- PETER J. DENNING

Operating
Systems
Theory

EEEEEEEEEEEEE

AAAAAAAAA
OOOOOOOOOOO



OPERATING SYSTEMS
THEORY

EDWARD G. COFFMAN, JR.

Pennsylvania State University

PETER J. DENNING

Purdue University

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, NEW JERSEY



Library of Congress Cataloging in Publication Data
CorrFMAN, EDWARD GRADY.
Operating systems theory.

(Prentice-Hall series in automatic computation)
Includes bibliographical references.
1. Electronic digital computers—Programming.
2. Algorithms. I. Denning, Peter J., joint author.
11. Title.
QA76.6.C62 001.6’42 73-18
ISBN 0-13-637868-4

© 1973 by Prentice-Hall, Inc., Englewood Cliffs, N.J.

All rights reserved. No part of this book may be reproduced
in any form or by any means without permission in writing
from the publisher.

10 9 8 7 6 5 4 3 21

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo



OPERATING SYSTEMS
THEORY



Prentice-Hall
Series in Automatic Computation

George Forsythe, editor

AHO, editor, Currents in the Theory of Computing
AHO AND ULLMAN, Theory of Parsing, Translation, and Compiling, Volume I: Parsing,
Volume 11: Compiling
(ANDREE)3, Computer Programming: Techniques, Analysis, and Mathematics
ANSELONE, Collectively Compact Operator Approximation Theory
and Applications to Integral Equations
ARBIB, Theories of Abstract Automata
BATES AND DOUGLAS, Programming Language/One, 2nd ed.
BLUMENTHAL, Management Information Systems
BRENT, Algorithms for Minimization without Derivatives
COFFMAN AND DENNING, Operating Systems Theory
CRESS, et al., FORTRAN 1V with WATFOR and WATFIV
DAHLQUIST, et al., Numerical Methods
DANIEL, The Approximate Minimization of Functionals
DEO, Graph Theory with Applications to Engineering and Computer Science
DESMONDE, Computers and Their Uses, 2nd ed.
DESMONDE, Real-Time Data Processing Systems
DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems
EVANS, et al., Simulation Using Digital Computers
FIKE, Computer Evaluation of Mathematical Functions
FIKE, PL/1 for Scientific Programmers
FORSYTHE AND MOLER, Computer Solution of Linear Algebraic Systems
GAUTHIER AND PONTO, Designing Systems Programs
GEAR, Numerical Initial Value Problems in Ordinary Differential Equations
GOLDEN, FORTRAN 1V Programming and Computing
GOLDEN AND LEICHUS, IBM/360 Programming and Computing
GORDON, System Simulation
HARTMANIS AND STEARNS, Algebraic Structure Theory of Sequential Machines
HULL, Introduction to Computing
JACOBY, et al., Iterative Methods for Nonlinear Optimization Problems
JOHNSON, System Structure in Data, Programs, and Computers
KANTER, The Computer and the Executive
KIVIAT, et al., The SIMSCRIPT 11 Programming Language
LORIN, Parallelism in Hardware and Software: Real and Apparent Concurrency
LOUDEN AND LEDIN, Programming the IBM 1130, 2nd ed.
MARTIN, Design of Man-Computer Dialogues
MARTIN, Design of Real-Time Computer Systems
MARTIN, Future Developments in Telecommunications
MARTIN, Programming Real-Time Computing Systems
MARTIN, Security, Accuracy and Privacy in Computer Systems
MARTIN, Systems Analysis for Data Transmission
MARTIN, Telecommunications and the Computer



MARTIN, Teleprocessing Network Organization

MARTIN AND NORMAN, The Computerized Society

MATHISON AND WALKER, Computers and TelecommuniationsiIssues in Public Policy

MCKEEMAN, et al., A Compiler Generator

MEYERS, Time-Sharing Computation in the Social Sciences

MINSKY, Computation: Finite and Infinite Machines

NIEVERGELT, et al., Computer Approaches to Mathematical Problems

PLANE AND MCMILLAN, Discrete Optimization: Integer Programming
and Network Analysis for Management Decisions

PRITSKER AND KIVIAT, Simulation with GASP 11: a FORTRAN-Based Simulation
Language

PYLYSHYN, editor, Perspectives on the Computer Revolution

RICH, Internal Sorting Methods Illustrated with PL|/1 Programs

RUSTIN, editor, Algorithm Specification

RUSTIN, editor, Computer Networks

RUSTIN, editor, Data Base Systems

RUSTIN, editor, Debugging Techniques in Large Systems

RUSTIN, editor, Design and Optimization of Compilers

RUSTIN, editor, Formal Semantics of Programming Languages

SACKMAN AND CITRENBAUM, editors, On-Line Planning: Towards Creative Problem-Solving

SALTON, editor, The SMART Retrieval System: Experiments in Automatic
Document Processing

SAMMET, Programming Languages: History and Fundamentals

SCHAEFER, A Mathematical Theory of Global Program Optimization

SCHULTZ, Spline Analysis

SCHWARZ, et al., Numerical Analysis of Symmetric Matrices

SHERMAN, Techniques in Computer Programming

SIMON AND SIKLOSSY, editors, Representation and Meaning: Experiments with
Information Processing Systems

STERBENZ, Floating-Point Computation

STERLING AND POLLACK, Introduction to Statistical Data Processing

STOUTEMYER, PL/Il Programming for Engineering and Science

STRANG AND FIX, An Analysis of the Finite Element Method

STROUD, Approximate Calculation of Multiple Integrals

TAVISss, editor, The Computer Impact

TRAUB, Iterative Methods for the Solution of Polynomial Equations

UHR, Pattern Recognition, Learning, and Thought

VAN TASSEL, Computer Security Management

VARGA, Matrix Iterative Analysis

WAITE, Implementing Software for Non-Numeric Application

WILKINSON, Rounding Errors in Algebraic Processes

WIRTH, Systematic Programming: An Introduction



PREFACE

MOTIVATIONS FOR STUDYING OPERATING SYSTEMS THEORY

In the years since 1969, the study of computer systems has assumed a
role nearly equal in importance to “theory of computation” and “program-
ming” in computer science curricula. In contrast, the subject of computer
operating systems was regarded as recently as 1965 as being inferior in im-
portance to these two traditional areas of study. This is a significant change
in attitude. The first signs of the change are evidenced in ACM’s Curriculum
68,1 and the speed of its development is evidenced in the report of Task Force
VIII of the COSINE (computer science in engineering) Committee of the
Commission on Education of the National Academy of Engineering, An
Undergraduate Course on Operating Systems Principles (June 1971).1 There
are several important reasons for this change.

First, three practical objectives—improving existing and future designs,
building systems whose correctness and behavior can be determined a priori,
and solving the resource allocation and performance evaluation problems—
have stimulated increasing amounts of research in computer system mo-
deling. A principal result of this effort has been the emergence of a “theory”
of computer operating system design and analysis. This in turn is having an
almost immediate impact on curricula: The traditional “case-study” approach
to teaching operating systems concepts, which never proved to be an out-
standing success, is giving way rapidly to the “modeling and analysis” ap-
proach.

Second, the problems of designing complex software systems have tra-
ditionally been considered of less intellectual interest than “theory of com-

tComm. ACM. March 1968.
fCommission on Education, National Academy of Engineering, 2102 Constitution

Avenue, Washington, D.C. 20418.

xi



xii PREFACE

putation” and “programming.” The so-called software problem, i.e.,
reducing the high cost of software development and improving quality
control over software packages, has been found to be increasingly severe. As
a result, tradition is being reversed, there is rising interest in software system
design as a deep intellectual problem. Much of “computer system theory” is
related in one way or another to understanding and managing complexity in
software systems.

Third, there is an ever widening appreciation of the view that the world
we live in has become a real-time system whose complexity is beyond the
reach of the unaided human mind to understand. Again and again we see
decisions taken in business systems, economic systems, social systems, and
urban systems—all real-time information systems—which, despite the best
of intentions, often turn out to have effects quite unlike those intended. This
phenomenon is not new in the experience of operating systems designers.
Since computer-system “theorists” are deeply involved in the problems of
managing complex real-time information systems in order to get them be-
having as intended, this subject material appears destined ultimately to have
an impact not restricted to the computer industry.

PURPOSE OF THIS BoOk

The principal object of this book is studying algorithms arising in the
design of computer operating systems. The study includes specifically
sequencing and control algorithms designed to avoid various types of failures
in systems supporting concurrent processes, scheduling algorithms designed
to minimize total execution times and mean flow times, algorithms for al-
locating processors among multiprogrammed tasks, algorithms for using
input/output devices, and algorithms for managing storage. These algorithms
are studied from a formal view. In studying a given problem, for example, we
shall discuss methods of devising mathematical models for the system and
algorithms of interest; we shall then work out analyses whose goals are
proofs of optimality, derivations of performance measures, or demon-
strations that the systems or algorithms have certain desirable properties.

Consistent with this theme, our educational goal is presenting in one
place, in as simple a form as possible, the most important formal methods
that have been applied to the study of operating systems algorithms. Our
interest is explicating the nature of the results, the essence of the analysis,
and the power and limitations of the methods. In many cases we have chosen
the simplest form extant of a model; we have done this whenever the addi-
tional generality would have multiplied the complexity of analysis beyond the
value of whatever additional insight would have been gained. The book will
succeed in its basic purpose to the extent that a reader moderately experienced
in operating system design is enabled to examine a given operating system



PREFACE xiii

and successfully to execute a project of (formal) modeling and analysis with
respect to that system.

There are two broad subject areas that we have consciously avoided in our
treatment: heuristic and experimental methods. (Indeed, the inclusion of
these topics and the corresponding results would surely have doubled the size
of the book.) Our exclusion of heuristic and exhaustive search methods for
combinatorial problems in scheduling is largely justified by their excellent
treatment in Conway, Maxwell, and Miller.T Our exclusion of experimental
results relating to storage management is justified by their extensive coverage
in the literature.

Experimental work concerned with simulation studies and statistical
analysis of system performance (and program behavior) interfaces directly
with the content of this book and would constitute a book on its own right.
However, our use of models of program and computer-use behavior proceeds
only as far as it is necessary to study the properties of specific algorithms.
Important and well-known work in modeling program behavior includes
graph models of parallelism and locality models of storage referencing.
In the course of the book we shall have numerous occasions to reference the
various engineering studies that support the assumptions made in the mathe-
matical models.

We have arranged the presentation to be useful both to professionals as a
reference and to students as a text. The reader is assumed to be familiar with
the concepts, systems, and techniques acquired in the core of a computer
science curriculum. For this reason we have omitted lengthy motivations for
the models devised and extensive interpretation of the results obtained. The
reader is expected to have a mathematical maturity corresponding roughly to
a senior undergraduate or beginning graduate student. More specifically, a
basic facility with formal systems is assumed along with a knowledge of the
elements of applied probability theory and Markov chains. We have included
a brief review of the latter material in an appendix.

Unfortunately, one or both of these latter assumptions is very frequently
not valid when and where it should be. If it is agreed that a major part of
computer science education is the study of algorithms—how to design and
write them clearly, how to design optimal or efficient algorithms, and how to
assess their performance—it follows from the nature and applicability of
probability models that the student must have achieved some competence in
applied probability theory and combinatorics. Until he acquires such skills,
the student will not generally be capable of designing nontrivial algorithms
and communicating to others precisely what he has done—in particularly
designing proofs that show his algorithm to have certain properties and

tR. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling (Reading,
Mass.: Addison-Wesley), 1967.



Xiv PREFACE

derivations of measures that can be used to judge the effectiveness and per-
formance of his algorithm.

At the end of each chapter we have included a selection of problems
relating to extensions or modifications of the material in that chapter. In the
majority of cases these are problems, rather than exercises. It is especially
important that the reader examine them, for their purpose is not only to
improve the understanding of material in the text, but also to fill out the
coverage of the book. There are many problems that extend the methods
treated in the various chapters to different but closely related applications not
otherwise discussed.

PLAN OF THE Book

According to the COSINE report there are six aspects of computer system
modeling in which useful abstractions and theoretical developments have
evolved:

Procedures and their implementation

Management of named objects

Protection

Concurrent processes

Management of memory hierarchies

Resource allocation
Of these six sets of concepts, the first three tend to be more descriptive in
nature, i.e., the abstractions do not involve any mathematics and are used by
designers for immediate guidance in implementations. The last three sets of
concepts do, however, rely on mathematical analysis before they produce
useful results. Accordingly, we have restricted attention to these three sets of
abstractions in this book.

One can identify additional areas in which modeling and analysis is highly
desirable; as of 1972, however, there are few results of practical interest
available, so we have omitted any treatment of them. They include system
reliability and integrity, system performance evaluation, and design method-
ologies.

The book consists of seven chapters. A brief description of each follows.

Chapter 1. Introduction is an outline of the physical properties of the
systems in which the results of our analyses in later chapters can be applied.
This includes a discussion of the relevant properties of processor and memory
devices; of the implementation features of virtual memory, especially paging;
of the general aspects of the memory management and processor scheduling
problems; and of the motivations for using concepts of parallelism, sched-
uling, paging, resource.pooling, and program behavior in systems design.

Chapter 2. Control of Concurrent Processes contains a formalism for
studying the important problems of controlling parallel processes, viz.,



PREFACE XV

determinacy, deadlock, mutual exclusion, and synchronization. We have
been able to formulate and study these problems in the context of a single
model, a partially-ordered system of tasks. While this model is by no means
the most general studied previously, it exhibits the properties one would
expect and desire in a practical system. The results of this chapter are: a) the
task system model allows a uniform discussion of the four control problems,
making evident the differences and similarities among them; b) the task
system model permits simple proofs of the determinacy results; c) the dead-
lock results extend those available in the literature; and d) the synchron-
ization results are all new and demonstrate the generality and power of the
synchronizing primitives.

Chapter 3. Deterministic Models of Processor Scheduling is a nearly com-
plete treatment of the results presently available on this subject. Given an
n-task system in which the execution time of each task is known, and given &
processors, the problem is finding a schedule (assignment of tasks to pro-
cessors) that completes in minimum time, or minimizes mean flow time, and is
consistent with the precedence constraints among tasks. Problems of this type
are important not only in the classical job-shop environment, but also in
future environments where, for example, task systems of the type studied in
Chapter 2 will be implemented.

Chapter 4. Probability Models of Computer Sequencing Problems contains
a review of basic queueing processes and their application to scheduling tasks
in multiprogramming systems. We have attempted to present a selfcontained
treatment in as short a space as possible. A major goal achieved in this chapter
is an analysis of the basic computer priority queues.

Chapter 5. Auxiliary and Buffer Storage Models treats problems arising
particularly in connection with input or output processes. The methods
developed in Chapter 4 are used extensively. The chapter includes a study of
the good (and bad) points of “shortest-latency-time-first” policies for serving
queues on rotating storage devices (disks, drums). It includes an analysis of
the buffering problem, showing the tremendous advantages inherent in
pooled buffers as opposed to private buffers. These results have important
implications with respect to any pooled resource, especially the partitioning
of main memory among tasks under multiprogramming. The chapter includes
a treatment of cyclic queue networks.

Chapter 6. Storage Allocation in Paging Systems is a fairly complete
treatment of the results known for controlling and analyzing the page traffic
resulting from given demand paging algorithms managing a single program
in a fixed memory space. All the known results about optimal algorithms are
included, as well as a new treatment of the important “stack algorithm”
concept. The relation between these results and multiprogramming is studied.



xvi PREFACE

Chapter 7. Multiprogrammed Memory Management specifically deals with
the properties of program-behavior models that exhibit “locality of reference”
and their implications with respect to multiprogrammed memory manage-
ment. The properties of fixed and variable partitioning strategies of multi-
programming are treated. The “working set model” is studied in its own right,
various important relations among working set size, paging rate, and page
reference patterns being obtained.

ACKNOWLEDGMENTS

There are many people whose help and guidance were instrumental in the
preparation of this book. Two in particular to whom we must express our
special gratitude are the Prentice-Hall Computer Science Series Editor Karl V.
Karlstrom, for his continuing patience and encouragement, and Richard R.
Muntz, for the many corrections and helpful suggestions resulting from a
painstaking reading of the manuscript.

Others whom we should like to acknowledge for their constructive criti-
cisms of portions of the manuscript are Robert Butler, Robert M. Keller,
Stephen R. Kimbleton, W. Frank King III, John E. Pomeranz, Barbara Ryan,
John Bruno, Vincent Shen, and Jeffrey R. Spirn.

Very special thanks are due Miss Doris Rice whose speed and efficiency
made the clerical aspects of preparing this book almost routine. Thanks are
due also to Mrs. Hannah Kresse for help in this regard.

Finally, the Pennsylvania State University and Princeton University are
to be acknowledged for their implicit support and for stimulating environ-
ments in which to write this book. The National Science Foundation under
grant GJ-28290 provided partial financial support.

EpwArRD G. COFFMAN, JR.

PETER J. DENNING



OPERATING SYSTEMS
THEORY



CONTENTS

PREFACE

INTRODUCTION

1.1. Operating Systems
1.2. Resources
1.3. Concurrent Processes
1.3.1. Process Coordination
1.3.2. Task System Scheduling
1.3.3. Probability Models of Schedulers
1.4. Memory Management
1.4.1. Auxiliary Storage and Buffer Problems
1.4.2. Paging Algorithms
1.4.3. Program Behavior and Multiprogramming

CONTROL OF CONCURRENT PROCESSES

2.1. Introduction
2.2. Determinacy of Task Systems
2.3. Deadlocks
2.3.1. Introduction
2.3.2. Prevention
2.3.3. Detection
2.3.4. Avoidance
2.4. Mutual Exclusion
2.4.1. Introduction

2.4.2. Primitives for Implementing Mutual Exclusion

2.4.3. Solution of the General Problem
2.5. Synchronization

vii

xi

10
11
12
15
19
21
23

31

31
35

51
53
55
59
59
62
64
68



viii

3

CONTENTS

DETERMINISTIC MODELS OF PROCESSOR
SCHEDULING

3.1. Introduction

3.2. Optimal Schedules for Two-Processor Systems

3.3. Optimal Schedules for Tree-Structured Precedence Graphs
3.4. Scheduling of Independent Tasks

3.5. List Scheduling

3.6. Scheduling with Preemptions and Processor Sharing

3.7. Systems of Different Processors

3.8. Scheduling to Minimize Mean Flow Time

PROBABILITY MODELS OF COMPUTER
SEQUENCING PROBLEMS

4.1. Introduction
4.1.1. Basic Definitions
4.1.2. The Arrival Process
4.1.3. The Service Mechanism
4.1.4. Performance Measures

4.2. Basic Queueing Results
4.2.1. The M/M/1 Queueing System
4.2.2. The M/G/1 Queueing System
4.2.3. Waiting Times
4.2.4. The Busy-Period Distribution

4.3. State-Dependent Arrival and Service Times in Poisson Queues

4.4. The Round-Robin Service Discipline

4.5. Nonpreemptive Priority Queues

4.6. The Shortest-Elapsed-Time Discipline

4.7. The Shortest-Remaining-Processing-Time Discipline
4.8. Comparison of Processing Time Priority Disciplines

AUXILIARY AND BUFFER STORAGE MODELS

5.1. Introduction

5.2. Minimization of Rotational Latency Effects

5.3. Minimization of Seek-Time Effects

5.4. Models of Interacting Input/Output and CPU Queues
5.5. Buffer Storage Allocation Problems

83

83
87
94
100
106
112
123
128

144

144
144
146
150
151
152
152
157
161
165
166
169
175
178
182
186

198

198
201
209
218
224



CONTENTS

STORAGE ALLOCATION IN PAGING SYSTEMS

6.1. Introduction
6.2. Paging Algorithms
6.3. Optimal Paging Algorithms

6.3.1. Cost Function

6.3.2. Optimal Replacement Policies
6.4. Stack Algorithms

6.4.1. Introduction

6.4.2. Priority Algorithms

6.4.3. Procedure for Determining the Cost Function
6.5. The Extension Problem
6.6. The Independent Reference Model
6.7. The LRU-Stack Model

MULTIPROGRAMMED MEMORY MANAGEMENT

7.1. Introduction
7.2. Locality
7.3. Working Set Model
7.3.1. Assumptions About Reference Strings
7.3.2. Definitions
7.3.3. Properties
7.3.4. Distribution of Working Set Size
7.4. Relation between LRU Paging and Working Sets
7.5. Fixed versus Variable Partitioning

APPENDIX

A

TRANSFORMS, THE CENTRAL LIMIT THEOREM,
AND MARKOV CHAINS

A.l. Generating Functions
A.2. Laplace Transforms and the Central Limit Theorem
A.3. Markov Chains

APPENDIX

RECURRENCE TIMES

INDEX

ix

241

241
243
246
246
249
254
254
257
263
265
268
275

285

285
286
287
288
290
292
295
298
299

313

313
315
317

320

323



1 INTRODUCTION

1.1. OPERATING SYSTEMS

The era of electronic computing has been characterized as a series of
“generations” [1], the first covering the period 1946-1950, the second covering
the period 1950-1964, and the third covering the period since 1964. Although
the term generation was intended originally to suggest differences in hardware
technology, it has come to be applied to the entire hardware-software system
rather than the hardware alone [2]. The development of general-purpose com-
plex software systems did not begin until the third generation and has moti-
vated the development of theoretical approaches to design and resource
allocation.

As will be discussed in detail later, the term “process” is used to denote a
program in execution. A computer system may be defined in terms of the
various supervisory and control functions it provides for the processes created
by its users:

1. Creating and removing processes.

2. Controlling the progress of processes, i.e., ensuring that each logically
enabled process makes progress and that no process can block indefinitely
the progress of others.

3. Acting on exceptional conditions arising during the execution of a
process, e.g., arithmetic or machine errors, interrupts, addressing errors,
illegal or privileged instructions, or protection violations.

4. Allocating hardware resources among processes.

5. Providing access to software resources, e.g., files, editors, compilers,
assemblers, subroutine libraries, and programming systems.

1



