INTRODUCTION TO PROGRAMMING

AND COMPUTER SCIENCE ‘

- INTRODUCTION
TO PROGRAMMING
AND COMPUTER SCIENCE

Anth ony\Balston

Chairman, Department of Computer Science
State University of New York at Buffalo

McGraw-Hill Book Company

New York, St. Louis, San Francisco, Diisseldorf, Jobnannesburg,
Kuala Lumpur, London, Mexico, Montreal, New Delbi,

Panama, Rio de Janeiro, Singapore, Sydney, Toronto

INTRODUCTION TO PROGRAMMING
AND COMPUTER SCIENCE

Copyright© 1971 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of the publisher.

Library of Congress Catalog Card Number 78-136182
07-051161-6
34567890MAMM798765432

This book was set in Journal Roman by Creative Book Services, division of McGregor &
Werner, Incorporated, and printed on permanent paper and bound by The Maple Press
Company. The designer was Creative Book Services. The editor was Richard F. Dojny.
Loretta Palma supervised production.

INTRODUCTION
TO PROGRAMMING
AND COMPUTER SCIENCE

McGRAW-HILL COMPUTER SCIENCE SERIES

RICHARD W. HAMMING
Bell Telephbone Laboratories

EDWARD A. FEIGENBAUM
Stanford University

Bell and Newell Colnguuter Structures: kEudirzgs and Examples
Cole Introduction u"')'-,'Compuiing'

Gear Computer Organization and Programming

Givone Introduction lotsﬁcbing Circuit Theory

Hamming Introduction to Applied Numerical Analysis
Hellerman Digital Computer System Principles

Kohavi Switching and Finite Automata Theory

Liu Introduction to Combinatorial Mathematics

Nilsson Artificial Intelligence

Ralston Introduction to Programming and Computer Science
Rosen Programming Systems and Languages

Salton Automatic Information Organization and Retrieval
Watson Timesharing System Design Concepts

Wegner Programming Languages, Information Structures, and Machine Organization

To ELIZABETH

May she grow up to
read this with some
of the pleasure with

which I dedicate it

preface

You must talk to the media, not to the programmer. To talk to the programmer
is like complaining to a hot dog vendor at a ballpark about how badly your
favorite team is playing.

Marshall McLuhan

This book is concerned with talking to computers. It has been used by me and
some of my colleagues at other universities in recent years as a text for a
one-semester first course in computing. One of my basic premises in teaching
such a course, which I hope is reflected in this book, is that it is time—past time,
really—for the first course in computer science to be taught at an intellectual
level similar to that of first university courses in other disciplines. This creates
some special problems in computer science. Not only will a first course be taken
by undergraduates majoring in an increasingly wide spectrum of disciplines, but,
for the foreseeable future, also by undergraduates at all levels from, say, fresh-
men in the sciences to seniors in the arts and humanities. This book is not aimed
specifically at any segment or level of the undergraduate population: it is my
position that much the same first course in computing should be given to all
undergraduate students, except, perhaps, for an honors-type course for concen-
trators in computer science. This is not to say that precisely the same subject
matter is best for both the mathematics major and the English major, but that
the differences are not so great that they cannot be accommodated by one book
or in a single class. It is also not to say that courses in the social implications of
computers are not good ones for many liberal arts majors, at least. They can be.
But such courses are perhaps made better if the students have previously learned
enough about computers qua computers to grasp fully these implications.

xiii

xiv Preface

Almost all colleges and universities now offer an introductory course in
computing or computer science. This course is taught from many points of view
and with varying aims, which is as it should be at this stage of computer science
education. Among these aims the following are easily distinguishable:

1. To teach only a particular computer language.

2. To teach the student what a computer algorithm is, while teaching some
computer language to be used as the tool by which to convey the algorithm to
the computer.

3. To introduce the student to the concept of communication with a computer
by emphasizing the comparison between structures designed to do similar tasks
in various languages, while again emphasizing the teaching of one language in
depth and getting the idea of an algorithm across intuitively as a by-product of
using the computer language or languages.

The first approach is only too reminiscent of the courses in the use of the
slide rule which were formerly given to engineers. Although a student in a first
course in computing should at least learn to use a computer via some language, a
course which teaches no more than this is almost devoid of intellectual value and
it is doubtful if it is worthy of college credit.

The latter two approaches both have their proponents and certainly both are
defensible. Courses embodying either approach typically include an introduction
to a variety of other topics in computer science. My own feeling is that, except
perhaps for those who will become professional computer scientists, an ability to
communicate and an understanding of the mechanism of communication should
be the aim of this first course. Most students in the course will never be more
than users, however sophisticated, for whom formal notions of an algorithm are
mostly irrelevant since constant use will give them a sound intuitive notion of an
algorithm.

This book, therefore, concentrates on computer languages, their major
components, and how these components are implemented in some languages. No
attempt is made to teach any specific language. I assume that any course using
this book as a text will, in addition, use my Fortran IV Programming—A Concise
Exposition, if Fortran is the language the students will actually use, or one of
the many good books on the other three languages discussed here (Algol, PL/I,
and Cobol). I should note my belief that whatever supplementary book is used,
it should be used much more as a reference than directly as a text to lecture
from. I firmly believe that the purpose of the lectures for this course (or, indeed,
for any course) should not be to dot all the #’s or cross all the #’s, but rather to
explain subleties and interrelations. One result of any college education should
be an ability to study and learn the prosaic details of a subject on one’s own;
much of the study of any computer language falls in this domain.

Preface XV

In one sense this book is a text in comparative linguistics. Of the four
languages considered, one, Cobol, is treated quite cursorily because my
orientation is certainly more toward scientific data processing than business data
processing. In addition, despite the very large current investment in Cobol
programs in the United States, it seems likely that the basic cumbersomeness and
limitations of this language will gradually cause it to be replaced by another
language, perhaps PL/I. Aspects of Algol and PL/I are treated in substantially
more detail than for Cobol but in illustrations and examples Fortran is used
somewhat more than Algol or PL/I. This reflects not only the fact that it is the
language I know best but also the fact that Fortran is now and, for the near
future at least, will continue to be the most widely used language at American
universities.

The four languages discussed in this book are all examples of higher level
languages and, more specifically, of procedure-oriented languages. Because there
are still proponents of the point of view that lower level languages, that is,
machine and assembly languages, should be taught before higher level languages,
it is appropriate to say a few words on this matter here. Indeed, in the early days
of digital computers, it made a lot of sense to teach machine language to all users
of computers just as it behooved all drivers of the first automobiles to know
something about internal combustion engines. But, just as most of us now learn
to drive without knowing very much about automobile engines, neither is there
any reason to learn machine or assembly language—which implies learning some
specifics about the computer—before learning a higher level language. In fact, in
order to ‘“‘drive” (i.e., to use effectively) a computer, the vast majority of all
users will never need to know more than a higher level language. Of course, as it
is useful to a driver to know how to check the water level in the radiator, so is it
useful to the higher level language computer user to know certain basic facts
about the structure and organization of computers; these are discussed in this
book. Machine and assembly language is best left to a second or later course in
computer science.

Given that a student should begin with higher level languages, why not be
content with considering only one language? After all, most of us learn to talk
only a single natural language initially. The most obvious answer to this is, since
we learn our natural language intuitively as regards speaking, reading, and
grammar, and then use these intuitive (and partly taught) concepts when we
study a foreign language, there is just no valid analogy between learning natural
and computer languages. From my point of view a better answer is obtained by
analogy with children who grow up bilingually. Such children seem to go
through a stage of confusion during which they cannot distinguish in their own
speech between the two languages but, at a fairly early age, this confusion
disappears and their language skills are usually markedly superior to monolingual

Xvi Preface

children. I have no doubts, both from intuition and experience, that teaching
students about more than one language simultaneously introduces an element of
confusion and makes the course more difficult. But I do believe the result is a
- better, deeper understanding of computer languages and their structure, the
most important by-product of which is an increased ability to learn other
computer languages.

In addition to the computer-language aspects of this book, there is a liberal
sprinkling of other topics which I believe will give students a broader view of
what computer science is really about. Among these are discussions of computer
arithmetic, compiling of arithmetic expressions, and logic, which I would expect
the individual instructor to take or leave depending upon his own predilections. I
do feel strongly that discussion of these or related topics in a first course on
computers adds substantially to the intellectual value of the course and gives the
beginning student a better basis on which to accept or reject computer science as
a possible career.

One of the most difficult problems I had in writing this book was to try and
produce something which could reasonably be followed in a linear fashion in a
course. The conflict is a familiar one to all instructors of beginning computer
courses. On the one hand, for motivational reasons, there is much to be said for
getting the student on the computer (i.e., giving him some kind of problem to
solve using the computer) as early as possible and to have him continue to use
the computer throughout the course. This usually involves introducing certain
concepts early in the course in a cursory or oversimplified fashion and then only
really explaining them later on. On the other hand, writing a book does not lend
itself to Ping-Ponging back and forth between topics. Some order in a written
presentation is, I believe, necessary and desirable, and this involves a fair amount
of introductory material before getting to those topics directly involved with
using the computer. This can—and has, in some recent books—lead to devoting
the first half of the book to nonlanguage topics.

I have partly solved this problem by restricting the introductory material
considerably, omitting, in particular, almost all discussion of computer
applications on the assumption that students are more and more aware of these
and that, anyhow, individual instructors can handle this better than it can be
done in print. But there is still enough introductory material so that it takes two
or three weeks to get into the computer-language aspects themselves. In order
not to have to wait a few weeks to get the students on a computer, at the first
meeting of the course I give each student a deck of cards consisting of a source
program and necessary data for a simple calculation (e.g., solution of quadratic
equations, a compound interest calculation). The source program is written to be
as nearly self-explanatory as possible to someone with no computer background

Preface xvii

whatsoever. Each source deck contains some syntactic or logical error such that
the error message or incorrect output should enable the complete novice to
correct the program. In the first lecture the students are taught which control
cards are necessary to complete the deck; later they keypunch these cards, run
the program, and rerun it until the error is corrected.

But it is still not possible to give the students their first real computer project
as early as I would like (no later than the beginning of the third week) and still
follow the text as written. My solution to this problem is embodied in the
aforementioned Fortran IV Programming—A Concise Exposition, which begins
with a section covering enough basic aspects of the Fortran language to enable
students to be given meaningful computer projects early in the semester. I use
this section for a few lectures in the second and third week of the semester and
then return to this book. When the appropriate part of this text is reached in
normal progression, I then fill in the interestices left by the earlier brief ex-
posure. By no later than the middle of the semester—say at about Chapter 6—I
am able to integrate directly with the text the introduction of language struc-
tures necessary for problems.

One of the acknowledged difficulties of teaching the first course in computer
science is the problem of how to handle input and output. Not only are the
language structures for input and output the most difficult parts of most
languages, but they are surely the most tedious. I am thoroughly convinced that
the beginning student should use one of the “free-format” or related types of
input-output facilities which, while not officially part of all procedure-oriented
languages, are available at almost all installations. Formatted output should not
be introduced until nearly the end of the course. Moreover, when it is
introduced, it should not be with stultifying detail. This is the prime reason why
the discussion of formatted input and output in Chapter 10 is quite brief.

One alternative to free-format input and output is an automatic grading
system, types of which are in use at a number of universities, in which all input
and output is done by the system for the student. Such systems have various
merits but they do tend to give students an unrealistic impression of how
computing really gets done and, in particular, the student using such a system
often gets no experience in developing the very important skill of generating
good test data.

NOTES FOR INSTRUCTORS

Starred sections (*) in the Contents can be omitted without loss of con-
tinuity. Most of these contain topics outside the main theme of computer

xviii Preface

language, but it would seem to me to be unwise to omit all such sections.
Daggered sections (1) contain material I consider of direct importance to users
of procedure-oriented languages but, nevertheless, these can be omitted if lack of
time necessitates some compromises. The following comments may also be
useful in planning a course.

Chapter 1 contains introductory material meant to be read rather than
lectured from; most instructors will probably wish to give their own
introductory lecture or two. Chapter 6 is another likely candidate for reading
without lecturing since most of it should be partially familiar to students by the
time it is reached in normal sequence through the book. Finally, Chapter 11,
intended mainly as a bridge to later courses, can be assigned for reading if
insufficient time remains to discuss it in lectures. This chapter is a purposely
sketchy introduction to operating systems and time sharing. One reason for this
sketchiness is the diversity of computing milieus which exist for students taking
a first course in computers. Another is that, by the time the end of the course is
reached, many students will have developed a feeling for the topics in this
chapter from their experience in the course and because many instructors will
slip information on the topics discussed in Chapter 11 into their lectures as the
course progresses.

Although little or no mathematical background is required for a course from
this book, some instructors will wish to omit those sections which emphasize
mathematics. These include Sections 3.1.1 through 3.1.5 and Section 5.1 which
emphasize arithmetic concepts, Section 5.3 on compilation of arithmetic
expressions, which emphasizes Polish notation, and Sections 9.1 and 9.2 on
Boolean algebra and logical design.

One departure from the more usual order of introduction of topics is the
relatively late (Chapter 8) discussion of language structures for iteration. There is
no intention in this to downgrade the importance of repetitive calculation using
different sets of data. No idea is more important for the beginning student and,
indeed, this idea is introduced much earlier than Chapter 8. Rather, my attitude
concerns the importance of distinguishing between language structures which
really extend the capabilities of the language and those which merely provide
added convenience to the users. Usually, there is too little stress placed on this
point. Language structures for iteration are a particularly obvious case of an
addition of convenience (an important convenience, of course), but not of
capability. If one takes the point of view that the order of introduction of topics
should facilitate the assignment of computer projects involving algorithms of
increasing complexity, then postponing the introduction of iteration structures
until relatively late is easily defensible.

Preface Xix

To conclude these notes, I offer two outlines of courses including topics and
a suggested number of lectures, one for a basic course emphasizing only language
and another for a more sophisticated course. As an alternative to the latter, a full
year, in-depth course could be taught from this book.

Basic Course More Advanced Course
Chapter Number Chapter Number

or Section of Lectures or Section of Lectures
1 3 1 2
2 4 2 3
3.2,3.2.1 1 3.1 3
4.1 3 3.2 2
4.3 2 4.1,4.2,4.3 3
44,44.1,4.4.2 2 4.4 2
5.2 3 5.1 1
54,5.5 4 5.2 2
6 3 5.3 2
71,72 2 54,5.5 3
7.3 4 6 2
74.1,7.5 1 7.1,7.2 1
8.1,8.2 4 7.3 2
9.3 2 7.4,7.5 1
10.2, 10.3 2 8.1,8.2 3
40 8.3 1
9.1,9.2 3
9.3 1
10.1 2
10.2,10.3 2
11 2
43

The remaining periods might be used for examinations and topics of the
instructor’s choice.

ACKNOWLEDGMENTS

The variety of topics and number of computer languages discussed in this book
mean that I am more than usually indebted to those of my colleagues who have
read all or part of the manuscript of this book and have helped me avoid
numerous errors. (Those that remain are, of course, all my own responsibility.)

XX Preface

In particular I must thank Alan Perlis, Robert Rosin, Phyllis Fox, Erich Schmitt,
Gilbert Berglass, Albert Allan, Joel Herbsman, Richard Eckhouse, and William
Fredson-Cole. In addition, I must thank two years of students at the State
University of New York at Buffalo who suffered through various versions of the
manuscript of this book and found errors in it and made comments on it.
Finally, I must thank—although mere thanks are not really enough—the legion
involved in typing the manuscript, particularly, Rita Keller, Deborah Finn, Joyce
Staskiewicz, Lynn Fagyas, Linda Janos, and my wife.

Antbony Ralston

conventions, notation, and abbreviations

CONVENTIONS

One of the problems in a book largely concerned with computer programming is
the conventions to be used in printing programs and, particularly, program
fragments in the text itself. This is especially true when, as here, more than one
programming language is being discussed. The conventions we have used,

hopefully consistently applied, are as follows:

Fortran and Cobol—Upper case used throughout, not only in programs,
but also when naming statements in text (e.g., “An EQUIVALENCE state-
mentis....”).

Algol—The publication language using boldface keywords is used
throughout in programs and text, except that semicolons after statements
are omitted in the text (e.g., ‘“The Algol statement A := B[6] := C[L,]] is
an example of”).

PL/I—The 60-character set is used in all programs and text; as with Algol,
semicolons are omitted after statements in text.

NOTATION

Syntactical Notation
This notation, which is introduced on page 34, is as follows:

<———> to be read as “The structure (whatever is contained in the

brackets) of the language”
XXi

Conventions, Notation, and Abbreviations

xxii
= to be readas ““is defined to be”

I to be readas ‘“‘or”

[n] these brackets placed over the symbol = with an integer #
inside them indicate that » is the maximum number of
symbols allowed in the definition which follows =

The quantity in <———> will always be upper case letters. For the sake of
informality we shall sometimes replace the <———> with lower case italics (e.g.,
<LETTER> — letter).

General Notation

Symbol or
Example

(Problem 14)

vn
(KLIST>)
[fabel]

L(A)

(101.100),

V or +
— or -- (overbar)

U

ASB
©)

Meaning

References to problems at the end of
each chapter

Choice in syntax—quantities in braces,
one of which must be chosen

Optionality in syntax—quantity in
brackets which may be omitted

Location of quantity in computer
memory—L followed by name of
quantity in parentheses

Base of number system—subscript fol-
lowing parenthesized number

Summation—Greek sigma with limits
of summation above and below

Logical symbols:

And

Or

Not
Equivalence
Implication

Flow chart symbols:

Function box
Decision box
Remote connector

First used
on page

40

199

319

169

68

70

357
357
357
375
375

36
37
37

Conventions, Notation, and Abbreviations

ABBREVIATIONS

xXiii

In the panels which consider language structures in various computer languages,

a number of abbreviations are used for conciseness. These are always explained

on the panel itself but, since abbreviations are also used occasionally in the text,

we give a complete list here:

ae—arithmetic expression
ar—argument
de—designational expression
exp—expression
fn—format number
id—identifier

int—integer
/jp—increment part
iv—integer variable
le—logical expression
Iv—logical variable

pint—positive integer
pn—procedure name
re—relational expression
ro—relational operator
s/—statement label
slv—statement label variable
st—statement (executable)
sv—scalar variable
td—type declaration
un—unit number
var—variable

