POCKET BOOK

Systemn V' Xenix
BSD 4.3 C-shell

file access permission
chmod chgrp chown
cpio-idium/dev/rflpA
tar-xvrt /dev/ rmt0

STIEM VNS AN
{ ST DASTHAS
TR TR 0 A
AL DS~ 8
Qe ALSTS RN
D3ATHAITIND
shell scripts
if-then-else
superuse r
swifch
/s-/

. A Butterworth-Heinemann Book



s 7/ 4

E%I : »-.Jn 'Z_’ of

5‘ 7700 /757 OW/7

o-mé%w
/ W = 2l
AT IS\RATL RN

ACACRNNOS -
STNORNSENTRD
“TOAERBING

snen scnpis |
" i-then-else

superuse r

ENEWNES




Newnes
An imprint of Butterworth-Heinemann Ltd
Linacre House, Jordan Hill, Oxford OX2 §DP

M,

t'c"' PART OF REED INTERNATIONAL BOOKS

OXFORD LONDON BOSTON
MUNICH NEW DELHI SINGAPORE SYDNEY
TOKYO TORONTO WELLINGTON

First published 1992
© Steve Heath 1992

All rights reserved. No pan of this publication may be repro-
duced in any material form (including photocopying or storing in
any medium by electronic means and whether or not transiently or
incidentally to some other use of this publication) without the
written permission of the copyright holder except in accordance
with the provisions of the Copyright, Designs and Patcuts Act
1988 or under the terms of a licence issued by the Copynght
Licensing Agency Lid, 90 Tottenham Court Road, London,
England WC1P 9HE. Applications for the copyright holder's
written permission 10 reproduce any part of this publication
should be addressed to the publishers.

British Library Cataloguing in Publication Data
Heath, Steve

Newnes UNIX pocket book.

1. Titde

004.165

ISBN 0 7506 03917

Printed and bound in Great Britain



Dedicated to those
unfortunates who
have switched off
their UNIX system
without running
shutdown.



Preface

The UNIX operating system combines every-
thing about software that people dislike together
with everything that they want. In other words, it
is extremely complex but very powerful and flex-
ible. The documentation that comes with the
systems can only be described as immense, es-
pecially when compared with the user manuals
supplied with MSDOS systems. This presents
problems in making the documentation available,
let alone guiding a user to the essential informa-
tion that is needed to perform both simple and
complex tasks. The aim of this book is to address
this problem and provide an easy to use reference
covering the majority of user commands and
system functions for the majority of UNIX sys-
tems. Also included are plenty of examples and
additional information which users need to know
but frequently cannot find. This book is based on
UNIX System V and the Bourne Shell but also
includes the C shell and BSD environments. These
form the basis of almost all the UNIX implementa-
tions available today. The commands and data
are organised in terms of their functions, rather
than as a straight alphabetical listing.

This book can be used in several different
ways. It could be read from cover to cover but, for
many, the best way is to either refer or browse as
necessary. Chapter 1 provides a brief history of
UNIX and explains how it works internally. Con-
cepts like virtual memory, disk caching, multi-
user and multi-tasking are explained here. For
explanations and examples of the various com-
mands, consult Chapter 2. The commands in-
cluded in this chapter are generally common to
most systems, although there is an appendix
which cross references the command differences
between System Vand BSD. Advanced users can
learn more about the Bourne and C shells in
Chapters 3 and 4. These concentrate on the more
complex features and shell script programming



and include a large number of examples, includ-
ing several scripts that act as DOS command
equivalents.

UNIX editors are covered in Chapter 5 and
Chapter 6 provides information for system ad-
ministrators, This is essential reading for all
users who have the responsibility of looking after
a UNIX system — from a large multi-user system
to a desktop workstation. It explains how to add
users and control their access to the system,
using printers, how to check the file system and
several techniques for improving performance,
The final chapter is concerned with the use of the
C compiler — with the emphasis on the tools
rather than the language itself. While there are
many good books on C, they rarely include in-
formation on how to use the compilers, assembler,
linker and libraries to their best advantage, yet
using these tools is as important as understanding
the C language itself. Finally, there are several
appendices covering what to do when a command
does not work or appears to be missing, a BSD
commandreference, an MSDOS to UNIX command
cross reference and how to transfer data using
serial communications.

I have used several conventions within this
book:
® All the text in courier font is taken directly
from the screen of a UNIX system - either a
Motorola MC68010, MC68020, MC68030 CISC
or MC88100 RISC based system running UNIX
System V release 3 with BSD extensions/envi-
ronment.
® Control characters are identified by preced-
ing the character with a A e.g. AC is the result of
pressing the control key and the C key at the same
time, ABACKSPACE is the combination of control
and backspace keys, and so on.
® As most of the commands are in lower case
and UNIX Is case sensitive, | have maintained
lower case for these words, even when grammar
dictates capitalisation of the first letter. To fully
differentiate them, they are in italics.



® In command descriptions, square brackets
indicate that the arguments or options within the
brackets are optional. In other words, the com-
mand does not expect the square brackets when
it is entered from a terminal. However, there are
cases when square brackets form part of a com-
mand, such as file name generation. If in doubt,
look at an example to see how the cormmand is
written and used in practice.

My thanks must go to Sue Carter once again
for lots more coffee, editing, constructive criticism
and support. Without her help, this book would
not have been as much fun to write as it was.

Steve Health



Acknowledgements

By the nature of this book, many hardware and software
products are identified by their tradenames. In these
cases, these designations are claimed as legally protected
trademarks by the companies that make these products.
Itis not the author's nor the publisher's intention to use
these names generically, and the reader is cautioned to
investigate a trademark before using it as a generic term,
rather than a reference to a specific product to which it
is attached.

All trademarks are acknowledged, in particular:

@ Motorola, MC68000, MC68010, MC68020, MC68030,
and MC68040 are all trademarks of Motorola Inc.

® UNIX is a registered trademark of AT&T.

® IBM, IBMPC and PC-DOS are trademarks ofInterna-
tional Business Machines.

® MS-DOS, Microsoft and Xenix are registered trade-
marks of Microsoft Corporation.

e DEC, PDP-7, PDP-11, VT100 and VAX are all trade-
marks of Digital Equipment Corporation.

® Intel is a registered trademark of Intel Corporation.

While the information in this book has been carefully
checked for accuracy, neither author nor publisher
assume any responsibility or liability for its use, or any
infringement of patents or other rights of third parties
that would result.

As technical characteristics are subject to rapid change,
the information contained is presented for guidance and
education only. For exact detail, consult manufactur-
ers' data and specifications.

Many of the techniques within this book can destroy
data and such techniques must be used with extreme
caution. Again, neither author nor publisher assume
any responsibility or liability for their use or any results.



Contents

Preface
Acknowledgements

Inside UNIX

Origins and beginnings
Inside UNIX

The UNIX file system

The physical file system
Building the file system
The file system

Disk partitioning

Data Caching
Multi-tasking systems
Multi-user systems

UNIX software structure
Processes and standard 1/O
Executing commands
Physical I/O

Memory management
Segmentation and paging
Limitations

UNIX commands
Login shells

Logging in

Navigating the file system
Redirecting output & input
File name generation

The shell environment

File access permissions
Files and directories
Copying and deleting files
Printing

Text formatting
Background processing
System activity

Utilities

Terminal configurations
File compression
Communicating with other users

Bourne shell scripts
Getting started
File name generation

00 C O pd :!i

10
11
14
17
18
21
22
24
25
27
28
32
34

36
36
37
40
51

55
61l

69
85
91
114
119
132
134
145
147

152
153
157



w

Shell variables 158
Using variables 163
Quoting 168
Conditional flow 170
Testing 181
Commands 184
Redirection 197
Debugging 199
DOS shell scripts 201
4 C shell scripts 212
Getting started 213
File name generation 218
Aliases 219
History mechanism 220
Shell variables 223
Using variables 228
Quoting 234
Conditional flow 236
Expressions 244
Commands 245
Redirection 249
Debugging 251
DOS shell scripts 252
5 Editors 264
The line editor ed 264
ed commands 266
bfs 277
ex 277
ex commands 278
vt 296
vi commands 299
sed 311
grep 312
fgrep 313
egrep 314
Using grep and sed 315
6 System administration 316
Adding users 317
Adding terminals 321
Passwords 326
Checking the file system 327
Using floppy disks 330
Formatting media 331

Backing up hard disks 332



Shutting the system down 335

Printer spooling 338
Tuning the system 342
Using the C language 348
Compiling C code 348
The preprocessor 350
The cc compiler 353
The as assembler 357
Symbols, references and relocation 357
The Id linker/loader 358
Creating library routines 360
Adding assembler routines 362
Changing the memory map 364
Debugging 365
Other commands 372
Appendix A 376
If the command does not work... 376
Appendix B 379
Communicating with other systems 379
Simple text transfers 379
Configuration problems 379
Kermit 380
uucp 384
Appendix C 385
UNIX signals 385
Appendix D 388
DOS & UNIX 388
Appendix E 389
BSD commands 389

Index 393



Chapter 1
Inside UNIX

UNIX has probably established itself as the
most well known multi-tasking operating system
within the microprocessor and mini computer
environment because of a group of dedicated
Individuals, an interest in computer games and
despite an apparent lack of interest from major
corporations.

Origins and beginnings

UNIX was first described in an article pub-
lished by Ken Thompson and Dennis Ritchie of
Bell Research Labs in 1974, but its origins owe
much to work carried out by a consortium formed
in the late 1960s, by Bell Telephones, General
Electric and the Massachusetts Institute of Tech-
nology, to develop MULTICS - a MULTIplexed
Information and Computing Service. Their goal
was to move away from the then traditional method
of users submitting work in as punched cards to
be run in batches - and receiving their results
several hours (or days!) later. Each piece of work
(or job) would be run sequentially - and this
combination of lack of response and the punched
card medium led to many frustrations - as anyone
who has used such machines can confirm. A
single mistake during the laborious task of pro-
ducing punched cards could stop the job from
running and the only help available to identify the
problem was often a 'syntax error’ message. Im-
agine how long it could take to debug a simple
program if it took the computer several hours to
generate each such message!

The idea behind MULTICS was to generate
software which would allow a large number of
users simultaneous access to the computer. These



users would also be able to work interactively and
online in a way similar to that experienced by a
personal computer user today. This was a fairly
revolutionary concept. Computers were very ex-
pensive and fragile machines that required spe-
cially trained staff to keep users away from and
protect their machine. However, the project was
not as successful as had been hoped and Bell
dropped out in 1969. The experienced gained in
the project was turned to other uses when
Thompson and Ritchie designed a computer filing
system on the only machine available - a Digital
Equipment PDP-7 mini computer.

While this was happening, work continued
on the GE645 computer used in the MULTICS
project. To improve performance and save costs
(processing time was very expensive), they wrotea
very simple operating system for the PDP-7 to
enable it to run a space travel game. This operat-
ing system, which was essentially the first version
of UNIX, included a new filing system and a few
utilities.

The PDP-7 processor was better than noth-
ing - but the new software really cried out for a
better, faster machine. The problem faced by
Thompson and Ritchie was one still faced by many
today. It centred on how to persuade manage-
ment to part with the cash to buy a new computer,
such as the newer Digital Equipment Company'’s
PDP-11. Their technique was to interest the Bell
legal department in the UNIX system for text
processing and use this to justify the expenditure.
The ploy was successful and UNIX development
moved along.

The next development was that of the C
programming language, which started out as at-
tempt to develop a FORTRAN language compiler.
Initially, a programming language called B which
was developed, which was then modified into C.
The development of C was crucial to the rapid
movement of UNIX from a niche within a research
environment to the outside world.



UNIX was rewritten in C in 1972 - a major
departure for an operating system. To maximise
the performance of the computers then available,
operating systems were usually written in a low
level assembly language that directly controlled
the processor. This had several effects. It meant
that each computer had its own operating system,
which was unique, and this made application
programs hardware dependent. Although the
applications may have been written in a high level
language (such as FORTRAN or BASIC) which
could run on many different machines, differ-
ences in the hardware and operating systems
would frequently prevent these applications from
being moved between systems. As a result, many
man hours were spent porting software from one
computer to another and work around this com-
puter equivalent of the Tower of Babel.

By rewriting UNIXin C, the painstaking work
of porting system software to other computers was
greatly reduced and it became feasible to con-
template a common operating system running on
many different computers. The benefit of this to
users was a common interface and way of work-
ing, and to software developers, an easy way to
move applications from one machine to another.
In retrospect, this decision was extremely far
sighted.

The success of the legal text processing
system, coupled with a concern within Bell about
being tied to a number of computer vendors with
incompatible software and hardware, resulted in
the idea of using the in-house UNIX system as a
standard environment. The biggest advantage of
this was that only one set of applications needed
to be written for use on many different computers.
As UNIX was now written in a high level language,
it was a lot more feasible to port it to different
hardware platforms. Instead of rewriting every
application for each computer, only the UNIX
operating system would need to be written for
each machine - a Jot less work. This combination
of factors was too good an opportunity to miss. In



September 1973, a UNIX Development Support
group was formed for the first UNIX applications,
which updated telephone directory information
and intercepted calls to changed numbers.

The next piece of serendipity in UNIX devel-
opment was the result of a piece of legislation
passed in 1956. This prevented AT&T, who had
taken over Bell Telephone, from selling computer
products. However, the papers that Thompson
and Ritchie had published on UNIX had created a
quite a demand for it in academic circles. UNIX
was distributed to universities and research insti-
tutions at virtually no cost on an ‘as is’' basis - with
no support. This was not a problem and, if
anything, provided a motivating challenge. By
1977, over 500 sites were running UNIX .

By making UNIX available to the academic
world in this way, AT&T had inadvertently discov-
ered a superb way of marketing the product. As
low cost computers became available through the
advent of the mini computer (and, later, the
microprocessor), academics quickly ported UNIX
and moved the rapidly expanding applications
from one machine to another. Often, an engi-
neer’s first experience of computing was on UNIX
systems with applications only available on UNIX.
This experience then transferred into industry
when the engineer completed training. AT&T had
thus developed a very large sales force promoting
its products - without having to pay them! A
situation that many marketing and sales groups
in other companies would have given their right
arms for. Fortunately for AT&T, it had started to
licence and protect its intellectual property rights
without restricting the flow into the academic
world. Again, this was either far sighted or simply
common sense, because they had to wait until
1984 and more legislation changes before enter-
ing the computer market and starting to reap the
financial rewards from UNIX.

The disadvantage of this low key promotion
was the appearance of alarge number of enhanced
variants of UNIX which had improved appeal - at



the expense of some compatibility. The issue of
compatibility at this point was less of an issue
than today. UNIX was provided with no support
and its devotees had to be able to support it and
its applications from day one. This self sufficiency
meant that it was relatively easy to overcome the
slight variations between UNIX implementations.
After all, most of the application software was
written and maintained by the users who thus
had total control over its destiny. This is not the
case for commercial software, where hard economic
factors make the decision for or against porting an
application between systems.

With the advent of microprocessors like the
Motorola MC68000 family, the Intel 8086 and the
Zilog Z8000, and the ability to produce mini
computer performance and facilities with low cost
silicon, UNIX found itself a low cost hardware
platform. During the late 1970s and early 1980s,
many UNIX systems appeared using one of three
UNIX variants.

XENIX was a UNIX clone produced by
Microsoft in 1979 and ported to all three of the
above processors. It faded into the background
with the advent of MSDOS, albeit temporarily.
Several of the AT&T variants were combined into
System III, which, with the addition of several
features, was later to become System V. The third
variant came from work carried at out at Berkeley
(University of California), which produced the
BSD versions destined to became a standard for
the Digital Equipment Company’s VAX computers
and throughout the academic world.

Of the three versions, AT&T were the first to
announce that they would maintain upward
compatibility and start the lengthy process of
defining standards for the development of future
versions. This development has culminated in
AT&T System V release 4, which has effectively
brought System V, XENIX and BSD UNIX environ-
ments together.

What distinguishes UNIX from other operat-
ing svstems is its wealth of annlication software



and its determination to keep the user away from
the physical system resources. There are many
compilers, editors, text processors, compiler con-
struction aids and communication packages
supplied with the basic release. In addition,
packages from complete CAD and system model-
ling to integrated business office suites are avail-
able.

Inside UNIX

The key to understanding UNIX as an oper-
ating system is to understand how much UNIX
protects the user from the computer system it is
running on - from having to know exactly where
the memory is in the system, what a disk drive is
called and other such information. Many facets of
the UNIX environment are logical in nature, in
that they can be seen and used by the user - but
their actual location, structure and functionality
is hidden. If a user wants to run a 20 Mbyte
program on a system, UNIX will use its virtual
memory capability to make the machine behave
logically like one with enough memory - even
though the system may only have 4 Mbytes of RAM
installed. The user can access data files without
knowing if they are stored on a floppy or a hard
disk - or even on another machine many miles
away and connected via a network. UNLX uses its
facilities to present a logical picture to the user
while hiding the more physical aspects from view.

While it is perfectly possible to simply accept
the logical world that UNIX presents, it is extremely
beneficial to understand its inner workings and
how UNIX translates the logical world to the
physical world.

The UNIX file system

UNIX has a hierarchical filing system which
contains all the data files, programs, commands



