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CHAPTER 13

Advanced Linear
Programming

Chapter Guide. This chapter presents the mathematical foundation of linear program-
ming and duality theory. The presentation allows the development of a number of com-
putationally efficient algorithms, including the revised simplex method, bounded
variables, and parametric programming. Chapter 20 on the CD presents two additional
algorithms that deal with large-scale LPs: decomposition and the Karmarkar interior-
point algorithm.

The material in this chapter relies heavily on the use of matrix algebra. Appendix D
on the CD provides a review of matrices.

The three topics that should receive special attention in this chapter are the re-
vised simplex method, the bounded-variables algorithm, and parametric programming.
The use of matrix manipulations in the revised simplex method allows a better control
over machine roundoff error, an ever-present problem in the row operations method of
Chapter 3. The bounded variables algorithm is used prominently with the integer pro-
gramming branch-and-bound algorithm (Chapter 8). Parametric programming adds a
dynamic dimension to the LP model that allows the determination of the changes in
the optimum solution resulting from making continuous changes in the parameters of
the model.

The task of understanding the details of the revised simplex method, bounded
variables, decomposition, and parametric programming is improved by summarizing
the results of matrix manipulations in the easy-to-read simplex tableau format of
Chapter 3. Although matrix manipulations make the algorithms appear different, the
theory is exactly the same as in Chapter 3.

This chapter includes 1 real-life application, 8 solved examples, 58 end-of-section
problems, and 4 end-of-chapter comprehensive problems. The comprehensive prob-
lems are in Appendix E on the CD. The AMPL/Excel/Solver/TORA programs are in
folder ch13Files.

551



552 Chapter 13 Advanced Linear Programming

Real-Life Application—Optimal Ship Routing and Personnel Assignment
for Naval Recruitment in Thailand

Thailand Navy recruits are drafted four times a year. A draftee reports to one of 34
local centers and is then transported by bus to one of four navy branch bases. From
there, recruits are transported to the main naval base by ship. The docking facilities at
the branch bases may restrict the type of ship that can visit each base. Branch bases
have limited capacities but, as a whole, the four bases have sufficient capacity to ac-
commodate all the draftees. During the summer of 1983, a total of 2929 draftees were
transported from the drafting centers to the four branch bases and eventually to the
main base. The problem deals with determining the optimal schedule for transporting
the draftees, first from the drafting centers to the branch bases and then from the
branch bases to the main base. The study uses a combination of linear and integer pro-
gramming. The details are given in Case 5, Chapter 24 on the CD.

13.1 SIMPLEX METHOD FUNDAMENTALS

In linear programming, the feasible solution space is said to form a convex set if the
line segment joining any two distinct feasible points also falls in the set. An extreme
point of the convex set is a feasible point that cannot lie on a line segment joining any
two distinct feasible points in the set. Actually, extreme points are the same as corner
point, the more apt name used in Chapters 2, 3, and 4.

Figure 13.1 illustrates two sets. Set (a), which is typical of the solution space of a
linear program, is convex (with six extreme points), whereas set (b) is nonconvex.

In the graphical LP solution given in Section 2.3, we demonstrated that the opti-
mum solution can always be associated with a feasible extreme (corner) point of the
solution space. This result makes sense intuitively, because in the LP solution space
every feasible point can be determined as a function of its feasible extreme points. For
example, in convex set (a) of Figure 13.1, a feasible point X can be expressed as a convex
combination of its extreme points X, X,, X3, X4, X5, and X using

X = 1 X) + X, + a3X3 + Xy + asXs + agXg
where
g tataztastasta=1
a;=0,i=1,2,...,6

This observation shows that extreme points provide all that is needed to define the so-
lution space completely.

FIGURE 13.1
Examples of a convex and a nonconvex set

(b)



