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Introduction

Background

The subject of this monograph is the interaction between real and complex homogeneous
geometry and its application to the study of minimal surfaces (or harmonic maps). That minimal
surfaces may be studied by complex variable methods is by no means a new idea since it
informs the work of Weierstrass on minimal surfaces in R®. However, we shall take as our
starting point the seminal papers of Calabi [23,24] in the late sixties. In those papers, Calabi
investigated minimal immersions of a 2-sphere in $§?* by associating to each such immersion a
holomorphic curve in the homogeneous Kahler manifold SO(2n+1)/U(n). The methods of Com-
plex Analysis were then brought to bear on these auxiliary holomorphic curves. The fruits of
this analysis include a complete classification of all minimal 2-spheres in an n-sphere in terms of
certain holomorphic 2-spheres in a complex projective space and a quantisation of the area of
such minimal surfaces.

These ideas were taken up in the eighties by a number of physicists and mathematicians and a
similar analysis of harmonic maps (i.e. branched minimal immersions) of a 2-sphere in a com-
plex projective space was soon provided [12,29,34,36]. Again, a key step is to associate to
each such harmonic map a holomorphic map of S? into an auxiliary complex manifold, in this
case a flag manifold of the form U(n+1)/U(r)xU(1)xU(n—r). Since then there has been a great
deal of activity in extending these results to other co-domains such as Grassmannians
[1,21,22,28,59,83], Lie groups [72,73,85] and other classical symmetric spaces [82, 3].
Meanwhile, in 1984, Eells-Salamon [33] observed that more flexibility could be obtained by con-
sidering pseudo-holomorphic curves in certain non-integrable almost complex manifolds. Indeed,
they associated such a curve to any conformal harmonic map of a Riemann surface into an
oriented Riemannian 4-manifold. Now pseudo-holomorphic curves are much less easy to handle
(see, however, [39]) but, nonetheless, these ideas provided a useful framework in which many of
the previous results could be understood.

Finally, in 1985, Uhlenbeck’s analysis of harmonic 2-spheres in the unitary group U(n) appeared
[72]. Here again, a decisive role is played by holomorphic curves in an auxiliary complex space
but this time the space in question is the infinite-dimensional Kahler manifold of based loops in
U(n): the loop group QU(n). One of Uhlenbeck’s main results is the existence of a Bicklund
transform, repeated application of which produces all harmonic 2-spheres in U(n) from the con-
stant maps. This provides a classification of all such 2-spheres which subsumes and extends
most of the known results in this direction for harmonic 2-spheres in complex Grassmannians.

Throughout a large part of the above development, attention has focussed on harmonic maps into
certain Riemannian symmetric spaces together with holomorphic curves in associated homogene-
ous Kihler manifolds. This monograph has its genesis in our attempt to understand the relation-
ship provided by these ideas between the geometry of symmetric spaces and the geometry of
complex homogeneous spaces.

Before turning to a discussion of this relationship, we refer the Reader who wishes to learn more
of the matters so briefly touched upon above to the surveys [16, 17, 84].



Overview

There are three main topics that are treated in this work: homogeneous geometry, twistor theory
and harmonic maps. Let us describe each of these in turn:

Homogeneous Geometry

We deal with two classes of reductive homogeneous spaces: the Riemannian symmetric spaces
and the (generalised) flag manifolds. The first class have been extensively studied and need no
introduction here. The flag manifolds are comparatively less well-known (see, however, [5, 80])
although they have a rich geometry and exhaust the compact Kahler homogeneous spaces with
semi-simple isometry group [6]. One of our main aims is to demonstrate a close relationship
that exists between flag manifolds and the Riemannian symmetric spaces with inner involution
(we call these inner symmetric spaces). To be more precise, we show that each flag manifold
G/H fibres homogeneously over an inner symmetric space G/K in an essentially unique way.
Moreover, each inner symmetric space is the target of such a fibration for at least one flag mani-
fold (and generally more than one). These fibrations, which we call canonical fibrations, are
defined entirely by the algebra of the situation: specifically, by the data of a parabolic subgroup
of a complex semi-simple Lie group and a compact real form of that Lie group.

We shall also identify an invariant holomorphic distribution (the superhorizontal distribution)
which is transverse to the fibres of our canonical fibrations. This distribution enjoys the property
that holomorphic curves tangent to it project onto minimal surfaces under the canonical fibra-
tions. In favourable circumstances, all minimal 2-spheres in the symmetric space arise in this
way.

A useful tool in this development is a particular realisation of the flag manifold as an adjoint
orbit (the orbit of the canonical element) which, although completely natural, appears to be quite
different from other such realisations discussed by Borel [65].

It is perhaps surprising that the non-compact version of these ideas is rather better known. In
fact, there is substantial overlap between the non-compact analogue of our theory and the theory
of period matrix domains [38]. In particular, in that setting, the superhorizontal distribution is
just that which defines the infinitesimal period relation.

These fibrations also appear in the thesis of W. Schmid [64] in his study of irreducible represen-
tations of non-compact semisimple Lie groups obtained on cohomology groups of holomorphic
line bundles over flag domains.

Twistor theory

A central role in the twistor theory of a Riemannian manifold N is played by the bundle
J(N) > N of almost Hermitian structures on N. This bundle carries a natural almosy complex
structure (denoted here by J;) which is, however, rarely integrable. In a search for complex
manifolds associated to N, we consider the zero set Z of the Nijenhuis tensor of J;, which is a
priori a set with very little structure. However, when N is an inner symmetric space, we shall
show that the isometry group of N acts transitively on each connected component of Z and that
each such component is in fact a flag manifold holomorphically embedded in J(N). Moreover,
the trace of the bundle projection on each component is a canonical fibration and all canonical
fibrations are realised in this way exactly once. This gives a geometrical interpretation of the
algebraic constructions discussed above and, at the same time, completely elucidates the structure
of Z. It seems clear that this theory will have applications to the geometry of inner symmetric
spaces. We shall present some preliminary results in this direction and refer the Reader also to



[19].

The structure theorem for Z is closely related to some results of Bryant [11] who considered the
intersection of Z and the zero set of the obstruction to holomorphicity of the horizontal distribu-
tion of J(N). This smaller zero set again has flag manifolds for components although of a rather
restricted type (in the terminology of chapter 4, they have height not exceeding two). Thus our
results may be viewed as an extension of those of Bryant. Our methods, however, are quite dif-
ferent and provide a new proof of Bryant’s theorem.

Harmonic maps

As applications of our theory, we study harmonic maps of S 2 into a symmetric space N. Our
results may be split into three categories.

Firstly, we show that if N is inner then any such harmonic map is the image under a canonical
fibration of a pseudo-holomorphic curve in a flag manifold. Here the flag manifold is equipped
with a non-integrable almost complex structure a la Eells-Salamon but we show that, under cer-
tain conditions, the vanishing of a holomorphic differential guarantees that the pseudo-
holomorphic curves are in fact holomorphic for the standard complex structure on the flag mani-
fold. This provides a uniform proof of results of Calabi [24], Eells-Wood [34] and Bryant [10]
concerning harmonic 2-spheres in $%*, CP™ and HP! respectively. Much of the previous theory
of minimal 2-spheres has depended on the vanishing of a series of holomorphic differentials. In
our approach, we identify a universal holomorphic differential which is also of use in our study
of stable harmonic 2-spheres, to which we now turn.

We completely characterise the stable harmonic 2-spheres in a simply-connected irreducible sym-
metric space of compact type N. It turns out that the results depend solely on z,(N) which is
either zero, Z, or Z (in case that N is Hermitian symmetric). If N is Hermitian symmetric, we
obtain an a priori proof of the result that stable harmonic 2-spheres are *-holomorphic; a result
originally proved by Siu-Zhong [66, 87] by checking cases. If z,(N) vanishes, we show that all
stable harmonic 2-spheres are constant. The remaining case, when n,(N)=Z,, is rather more
interesting. here N contains a family of totally geodesically immersed Hermitian symmetric sub-
spaces (which turn out to be projective spaces) with the property that maps factoring holomorph-
ically through one are stable and harmonic as maps into N. Moreover, we show that any stable
harmonic 2-sphere in N must so factor. It is an interesting corollary of this development that
such a symmetric space must admit a null-homotopic stable harmonic 2-sphere which is non-
constant. These results form joint work with Simon Salamon and we thank him for his permis-
sion to let us present them here.

Finally, we extend the results of Uhlenbeck [72] mentioned above to a large class of simple Lie
groups G (those with Hermitian symmetric quotient). In so doing, we follow Valli’s insightful
approach [73] to Uhlenbeck’s work. We find a Bicklund transform for harmonic maps e
with which all such maps may be constructed from the constant maps. This answers to a large
extent question 2 posed by Uhlenbeck in [72]. As an application of these ideas, we obtain a
number of results concerning gap phenomena for harmonic 2-spheres in symmetric spaces some
of which are new.

Remark on methods

The Reader may be dismayed but not surprised to learn that we have recourse to a large amount
of Lie theory during this work. Perhaps more novel and interesting is our repeated use of the
theorem of Birkhoff-Grothendieck on the decomposition of holomorphic vector bundles and the
reduction of holomorphic principal bundles on S2. Indeed, chapters 2 and 6-8 may be read as



-4 -

an essay on the applications of this theorem to the study of harmonic 2-spheres. This idea is not
new: in the investigation of stable maps, its use may be traced back to Siu-Yau [67], while, in
studies of the construction of harmonic maps, it makes its first fleeting appearance in the work
of Erdem-Wood [35]. However, we hope to demonstrate in this work that its use as a powerful
and unifying tool in this area has been underestimated. In particular, this appears to be the first
time that the full force of the Grothendieck version of the theorem [40] has been applied to har-
monic maps.

Table of contents
As a guide to the Reader, we present a brief description of the contents of each chapter.

Chapter 1 contains generalities about homogeneous geometry and sets up our approach to that
subject. The main point of interest is that we define a Lie algebra valued 1-form on a reductive
homogeneous space which satisfies an analogue of the Maurer-Cartan equations. Much of the
geometry of such a space can be described using this 1-form and in this way we provide a
framework for calculating on homogeneous spaces which is of great use in the sequel.

Chapter 2 introduces harmonic maps and we apply the Birkhoff-Grothendieck theorem for the
first time to demonstrate the existence of pseudo-holomorphic curves in J(N) covering a har-
monic map S2 — N where N is an even-dimensional manifold. Extensions of this result to suit-
ably ramified minimal surfaces of higher genus in Kahler manifolds via the Harder-Narasimhan
filtration are also presented.

Chapter 3 introduces symmetric spaces. Here also are collected various items of structure theory
which we need in the sequel. The main result of the chapter is the determination of the second
homotopy group of the irreducible symmetric spaces of compact type. We provide a simple
root-theoretic criterion for determining this group together with an explicit set of generators.
Our approach is based on Murakami’s version [53] of the classification of involutions of a com-
pact simple Lie algebra. The Reader with no taste for structure theory is invited to skip most of
this.

Chapter 4 is one of the most central in the monograph. After some algebraic preliminaries, we
define flag manifolds and their non-compact analogues, the flag domains. We then construct the
canonical fibrations and superhorizontal distributions and give some examples. Our construction
throws up a particular choice of Kahler metric on a flag manifold and we discuss the cohomol-
ogy class that the Kahler form represents. This last will be needed in chapter 8. Finally, an
appendix describes the adjustments to be made for non-inner symmetric spaces.

Chapter 5 is consecrated to the zero set of the Nijenhuis tensor on J(N) and the determination of
its structure.

Chapter 6 describes the covering of harmonic 2-spheres in symmetric spaces by pseudo-
holomorphic curves in flag manifolds. Just as in chapter 2 we use the Birkhoff-Grothendieck
theorem for this. We also discuss holomorphic differentials.

Chapter 7 contains our classification of stable harmonic 2-spheres in compact symmetric spaces.

Chapter 8 is concerned with our Backlund transform procedure for harmonic 2-spheres in a sim-
ple Lie group and its applications.

Final remarks and acknowledgments

Some of the work described in chapters 4, 6 and 8 was announced in [18] while the results of
chapter 7 were announced in [20]. Readers with long memories should also note that a prelim-
inary version of this manuscript was in circulation under the title Twistors, Homogeneous



Geometry and Harmonic Maps.

During the lengthy course of the preparation of this monograph, we have benefited from innu-
merable conversations with too many colleagues to mention. Special thanks are due to Simon
Salamon, especially for his collaboration in the results of chapter 7; Georgio Valli, for informing
us of his work and John C. Wood and Jim Eells for their advice and encouragement.

This document was typeset by the first author on a SUN-3 workstation running under UNIX
using the typesetting program troff together with a local (to Bath) enhancement of the egn
mathematics preprocessor written by Professor R. Sibson. The first author would like to thank
Professor Sibson for sharing his expertise in this area.



Chapter 1. Homogeneous Geometry

Let M be a manifold on which is given a smooth transitive action of a Lie group G. Choosing a
base-point xo€M we let H be the stability subgroup of x, and then we have a principal H-bundle
n:G—oM, where n(g)=g.xy, on which G acts by left translations as bundle automorphisms.
Indeed M is diffeomorphic to G/H and then = is just the coset fibration. The surjective map of
the Lie algebra g of G, g—T, M given by

£ 4

& expté.xg

=0

has the Lie algebra h of H as kernel and so induces an isomorphism of g/h with T, M. We
extend this by equivariance to get an isomorphism of the associated bundle Gxyg/h with TM
which is given explicitly by

exptAdgé.x
t=0

d d
h * T . = —
[g.é+h] g & expts.xy ar

1=0
where x =7 (g).

Notation. If W is a representation of H we shall henceforth denote the associated bundle Gx ;W
by [W].

The homogeneous space M is said to be reductive if the Lie algebra g has a decomposition
g =h®m for some Adg;H-invariant summand m. Then g/h=m as H-spaces so [g/h] = [m] and

hence we have an isomorphism [m] = TM. Since m is an invariant subspace of g we have an
inclusion [m]c[g]. The latter may be canonically identified with the trivial bundle g = Mxg via

(8,61 (7(g),Adg?).

Thus we have an identification of TM with a subbundle of the trivial bundle which we may view
as a g-valued 1-form S on M.

If Py, (resp. Py) denotes the projection onto m (resp. h) then we have

B(X) = AdgP,,(Adg™1¢) if X = % expté.x (1)
1=0

and x=x(g). From this it is easy to see that 3 is equivariant in the sense that
g*B = Adgp.
Note the useful identity

X = A expiB (X).x, XeT, M.
dar |,_o

Example. If M is actually the group manifold G, acting on itself by left translations, then we see
from the above identity that f is just the (right) Maurer-Cartan form of G.
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By analogy with the above example, we shall call B the Maurer-Cartan form of the reductive
homogeneous space M.

A homogeneous space M of G is called a symunetric space if there is an involution 7, of G with
(G™)ocHcG™. Then h=g™ and m=g ™ is a reductive summand which satisfies the additional
condition [m,m]ch. Symmetric spaces are the most widely studied class of reductive
homogeneous spaces. We shall see the geometrical significance of the extra condition on the
reductive summand in this special case shortly.

Returning to the general situation, the left translation of a reductive summand m around G
provides a G-invariant distribution which is horizontal for # and right H-invariant. This defines
a G-invariant connection in the principal bundle 7 : G—M. This procedure produces a bijective
correspondence between reductive summands m and G-invariant connections in 7: G—>M. We
shall view the reductive homogeneous space M as coming equipped with a fixed summand m
and refer to the corresponding connection as the canonical connection. Its connection form a (as
an h-valued 1-form on G) is P,6 where 6 is the left-invariant Maurer-Cartan form of G. G-
invariant tensors on M (or, more generally, G-invariant sections of associated bundles) are
parallel with respect to the canonical connection and in particular the canonical connection is a
metric connection for any invariant metric on M. Given such a metric, TM becomes isomorphic
with the cotangent bundle T*M and so is a symplectic G-space. S is essentially the momentum
map for this symplectic action of G.

The canonical connection induces a covariant differentiation D in any associated bundle [V ] for
any representation V of H. If V happens to be the restriction of a representation of G then [V]
can be identified with the trivial bundle V via the map

[g.v] B (n(g),g.V).

In this case there is a simple relationship between flat differentiation and the covariant
differentiation induced on V by the canonical connection.

Proposition 1.1. Let f:M — V be a smooth section of V then

df = Df+ B.f .

Proof. Under the identification of V with [V] a section f of V corresponds with an H-
equivariant map f:G — V as follows

fe)=g'.f(x(g) . @)

Further, the covariant differential Df lifts as the V-valued 1-form df+a. f on G. Differentiating
(2) and using the Leibnitz rule gives

dfg =—-0.g7  for+g . axdf
Thus
(df+a.f), = g7 .a*df + (a-6),.f
=g ' a*df-PL0.f
= g~ N(n*df - Adg(Pp6).for).
Now, pulling equation (1) back to G we have
(7*B), = Adg(Py,6)



whence
df+a.f=g " x*df - B.)
and so
Df =df - B.f
concluding the proof. O

Suppose W is an H-invariant subspace of the G-representation V. Then [W] is a G-invariant
subbundle of the trivial bundle V and hence the inclusion [W]CYV is parallel for the canonical
connection. Thus one way to view proposition (1.1) is as a formula for the canonical connection
in [W]. If V=W, +W, is an H-invariant splitting of a representation of G then

V= [W]+[W;]

is a G-invariant splitting of V into D-parallel subbundles. As a simple consequence of
proposition (1.1) we have the following:

Lemma 1.2 Denote by 0:G — End(V) the representation of G on V and let V=[W]+[W,].
Let P;:V — [W;] be the projection onto [W;] viewed as a function P;:M — End(V). Then

dP; = [a(B), Pil.

Proof. The projections are G-invariant and hence D-parallel. But on End(V)
D =d-[o(B),.],

whence the result. O

Example. Letting o be the adjoint representation of G we see that
g = [h] +[m]

As we remarked above [m]=TM while we see that [h],(g)cg is Adz(g)h and this is the
isotropy Lie algebra at #(g). Hence we call [h] the isotropy bundle. Henceforth we will denote
the projection onto the tangent bundle by P:g — [m]. Let us observe that for eg, if we define a
vector field & by B

¢ = % '=0expt§.x , xeM,
then formula (1) immediately gives us
B(&) = P¢. 3)

As remarked above, the 1-form S is the analogue for reductive homogeneous spaces of the
Maurer-Cartan form for Lie groups. We now prove the analogue of the structure equations for

B.

Lemma 1.3.
dpg = (1-1P)[BAB].
Proof. We begin by differentiating the equivariance relation
g*p = Adgp



to obtain
L8 = £ B].
Applying Cartan’s Identity we get
igdB = [£, B) - d(igB).
From (3) we have that
igB = P
so that we obtain from lemma (1.2)

d(igB) = d(P§) = (dP)¢ = [adB, P]¢.

Thus
igdf = [&, B1-[B, PS1+PLB, <]
= (1-P)(&, B1-[B, P¢]
= (1-P)[P¢g, B1+[P¢, B]
= (2-P)[P¢, B].
But
ig BAB] = [B(E), B1-[B. B(E)
= 2[P¢, B],
whence the result follows since the & span T, M for all xeM. (m]

As a simple corollary let us compute the torsion and curvature of the canonical connection:

Corollary 1.4. Let T, R denote the torsion and curvature respectively of the canonical
connection. Then

BT = =3P[B A B]
BeR = -} (1-P)[BAB], BI.
Proof. From proposition (1.1) we have
- B(DxY) = XB(Y) - [B(X), B(Y)]
since we are in the adjoint representation. Thus
B(T(X,Y)) = B(DxY -DyX - [X,Y])
= dB(X,Y)-2[B(X), B(Y)],

ie.

BeT = dB—[BAB]
and the formula for the torsion follows immediately from lemma (1.3).

As for the curvature,
= [dy—-ad B(X),dy—ad B(Y)] B(Z) - [X,Y1B(Z) + [BIX,Y], B(Z)]
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= —addB(X,Y) B(Z) + ad[ B(X), B(Y)] B(Z),
whence
B°R = jad[BA B]°B—addB~p

and the result now follows from lemma (1.3). O

Remark. 1t is clear from Corollary (1.4) that the canonical connection is torsion-free if and only
if [m,m]ch, that is, if and only if

g=h+m

is a symmetric decomposition of g. Further, if M has an invariant metric, the above condition is
precisely that the canonical and Levi-Civita connections coincide. Thus these connections
coincide for symmetric spaces. Returning now to the general setting of lemma (1.2), we observe
that flat differentiation followed by the projection P; defines a connection in [W;]. It is natural to
ask when either of these connections coincides with the canonical one.

Lemma 1.5. Let V=[W ]+[W,] be a G-invariant splitting and let D, be the connection in
[W,] given by

D; = Py°d.
Then
Dy =d-Pyo(p) .
Further, Dy =D if and only if m.W,cW, and in this case o(f) | [W,] is the second
fundamental form of [W{] in V.
Proof. We have from lemma (1.2),
D, = Pied =d—-dP, =d-[o(pB),P,]
=d-o(p)+Po(B)
=d-P,0(p).
Thus D =D if and only if
o(B) = Pyo(B)
on [W,], if and only if
Pio(B)P; =0,
or, by equivariance, if and only if
m.W,cW,.
Lastly, we note that the second fundamental form of [W;] in V is given by
Pyed|C=([W]) = Pyoa(B)|C=(IW1])
and the lemma follows. O
Remark. Applying this to g =[h]+[m] we see that the canonical connection on TM =[m]

coincides with Pod if and only if [m, m]ch. Thus for Riemannian symmetric spaces all three
connections we have considered coincide. This will be of importance when we come to study
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maps into symmetric spaces, for it gives us two simple formulas for the Levi-Civita connection,
as either the canonical connection, or the projection of flat differentiation in the ambient trivial
bundle. An important special case is the Lie group G itself which we consider next as an
example.

Example The group G may be viewed as a symmetric space for GxXG with action
(81.82)8 = 81883

so that the isotropy subgroup at e is the diagonal subgroup H = {(g,g): g€G } and the involution
on GxG is given by

70(81,82) = (82.81)
Thus H=(GxG)™ and
m = (g+g) " = ((£,-¢):éeg) = ¢
To calculate f, take geG, XeT,G and then we have
Be(X) = By((g,€)s(8_1,€)+X)

= ((8.€)*B)g(Ly12X)

= Ad(g,e) (B.(L;-1.X))

= Ad(g.€) BLg14X,~3Ly 1. X)

= (%Rg—ux,—%Lg—uX).
Thus if 8%, 6F are the right- and left-invariant Maurer-Cartan forms,

' B = (6% ~10b).

Substituting this formula into that of proposition (1.1) and projecting onto the second factor
gives us

6"(DxY) = X(6-(Y)) +3[6%(X), 61 (V)]
so that identifying TG with g via 6L we see that
D = d +}lade’.
Thus our canonical connection is the }-connection of Cartan-Schouten.

Returning to general reductive homogeneous spaces M, if ¢:N — M is a smooth map of a
manifold N into our homogeneous space, it is easy to see that our constructions are functorial.
Indeed, the (straightforward) proof of the following lemma is left to the reader.

Lemma 1.6. Let 0:G — End(V) be a representation, V the trivial bundle and q):N:—)M a
smooth map. Then ¢~ 'V is trivial and the pull-back of the canonical connection on 'V (over N) is
given by

97D = d-o(p*p).

As an application of our methods let us now prove the well known result that a symmetric space
G/K may be totally geodesically immersed in G (c.f. [27]). More generally, we compute the
condition for the differential of an equivariant map ¢ of reductive homogeneous spaces to be
parallel for the canonical connection.



< (2=
Proposition 1.7. Let N;, i = 1,2, be reductive homogeneous G;-spaces with reductive summands
m; and ¢:N; = N, be a map equivariant with respect to a homomorphism p:G, = G, so

p(gx) = p(g)e(x)

for xeN,, geG,. Then dgp is parallel with respect to the canonical connections if and only if, at
some xeNy,

[(1-97'Py) p(Imy],), 97! P, p(Imy],)] = 0.
Here P, ‘g [m,] is projection along the isotropy bundle of N,.

Remark. This condition is satisfied if p([m,],)c[m;],,,.
We begin the proof with a lemma of independent interest:

Lemma 1.8. Under the hypotheses of (1.7), let B; denote the Maurer-Cartan form of N;. Then
9*B, = 97 Pyopop; .
Proof. Let XeT,N, then

X = exptf;(X).x,

dr|,_o

SO

do(X)

l

@(exptf (X).x)
t=0

= —| pexpiB(X)).p(x)
=0

= lzoexptp(ﬂl(x))@(x)

whence

P*B,(X) = (97 'Py) pBy(X). 0

Proof of (1.7). 1f D', D? are the canonical connections we must show that
Ddp(X,Y) = ¢~ 'Dgdo(Y)—dp(DyY) = 0.
Using (1.8), we have
¢! B,(Ddp(X,Y))

9 'DFp Py pB (Y)) - 9~ P, pB(DRY)
o™ P2 {97 DF(pB (Y)) - pBi(DRY))

since D2P, = 0, so
97! B,(Ddo(X,Y)) = -9~ 1P, ([@*By(X), pBy (Y)] - p[ B (X), Bi(Y)])
= —¢7'Pl(¢7 ' Py=1)pBy (X), pB1(Y)]
= [(1-97'Py) pp1(X), 7' Py pBy (V).

The proposition now follows by evaluating the above formula at any point xeN,, which is
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sufficient by equivariance. O

Corollary 1.9. Let G/K be a symmetric space with involution 1 at eK. Then we have a totally
geodesic immersion ¢:G/K — G defined by

p(gk) =g"g™!.

Proof. Define p:G — GxG by p(g)=(g™,g). Then ¢ is equivariant with respect to p and for
éem
p(&) = (706.8) = (=£.9)

whence p preserves the symmetric decompositions of G/K and G=GxG/G and so ¢ is totally
geodesic by lemma (1.7). O

Let us conclude this chapter with an example to illustrate the concepts we have introduced:
Let G, , denote the complex Grassmannian of r-planes in C". Clearly, the unitary group U(n)
acts transitively on G, , so that G, , is a homogeneous space. Let us take as a base point Vj,
the span of the first r elements of the canonical basis of C". Then the stabiliser H of V| is
isomorphic to U(r)xU(n-r). Further, letting 7 denote the involutive automorphism of U(n)
obtained by conjugating with

1 onV,

J, =

-1 on Vg
we see that H=U(n)™ so that G, , is a symmetric space. The Lie algebra u(n) of U(n) is the
algebra of nxn skew-Hermitian matrices and the corresponding symmetric decomposition is
given by

u(n) = h®&m
where
h = {Aeu(n): AVycV,}
m = [AGU("): AVOCVOL, AVO'LCVO}

Now, we have
[Volgy, = 8Vo for geU(n),

so that [Vy]cC" is the tautological bundle T—G, , whose fibre at WeG, , is ‘W itself.
Similarly,

[m]ly = {Aeu(n): AWCW?!, AW!lcW).

Thus, the trivial bundle C" admits a U(n)-invariant splitting as the direct sum of the tautological
bundle and its orthocomplement. Moreover, by lemma (1.5), the Maurer-Cartan form of G, , is
the sum of the second fundamental forms of T and T!. This enables us to reduce many
questions concerning the geometry of G, , to the study of sub-bundles of C" and their second
fundamental forms: an approach which recently proved to be useful in the study of harmonic
maps into Grassmannians (c.f. [22, 21]).



