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Introduction

The present book deals with the axiomatic potential theory of
local character and its corresponding continuous standard processes.This
subject has already been treated by several authors.

P.A. Meyer [26] constructed a Hunt process on a Brelot space
such that the class of all excessive functions and the class of all
positive hyperharmonic functions should coincide. This result was ge-
neralized and completed by N.Boboc, C.Constantinescu and A.Cornea [8],
W.Hansen [19], I.Cuculescu [16], H.Bauer [2], C.Constantinescu and
A.Cornea [13]; The converse problem, the construction of an axiomatic
potential theoretic structure associated to a given continuous Markov
process, was first approached by Ph. Courrgdge and P.Priouret [14].
Then J.C. Taylor [40] and J.Bliedtner and W.Hansen [5] proved that
each continuous standard process, whose potential kernel is strong
Feller, yields a harmonic space, in the meaning of C.Constantinescu
and A.Cornea [13].

The classical examples of the axiomatic potential theorv of
local type and of continuous Markov nrocesses are associated to
second order elliptic or hypoelliptic differential operators. On a
locally compact space a fairly good substitute for the differential
operators are the local operators. The notion of a local operator was
introduced by E.B. Dynkin [17] n.145. He associated a local omerator
to each continuous standard process. The relation between this notion
and the kernels from the axiomatic potential theorv was nointed out
by G.Mokobodzki and D.Sibony [31] Th. 21. Further boundary value
problems associated to local onerators were considered bv G.Lumer
[23], [24] and J.P. Roth [347].

The main axiomatic potential theoretic object studied here
is a local operator, L, on a locally compact space, X, with a coun-
table base. Similar to elliptic differential operators our local ope-
rator is assumed to obey a maximum principle and to have a base of
open sets that are regular for the Poisson-Dirichlet problem. We note
that G.Lumer (in [23] ) was the first to consider a similar framework,
but the spirit of the opresent apnroach differs much from his.

In Chapter I we construct a continuous standard process with
state space X such that its characteristic operator extends L and its

transition function is unique. Then we characterize the excessive
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functions of the process by means of the Dirichlet problem for L.

The sheaf of all excessive functions and the hitting distribu-
tions (or harmonic measures) mav be viewed as the invariants under the
random time change transformations. In Chapter II we suggest an axio-
matic approach for these objects, taking as axioms some of the nro-
perties proved in the first chapter. First we construct the potential
kernel associated to a notential (function) by computing it in terms
of the given harmonic measures. In Section 6.o0f Chapter II we construct
an open covering {Ui|iGI} and for each i a continuous strict poten-

tial, p;r on Uy such that Di—pj is harmonic on UiﬂUj for i#j. This is

somewhat analogous with the nroblem of constructing the random time
change for two processes with identical hitting distributions. Bv
analogy an inequality similar to the one proved by R.M. Blumenthal and
R.K. Getoor [6] turns out to be important. This inequality is proved
in Section 3. From it we deduce some remarkable promerties of the
potential kernel associated to a continuous strict potential. Finally
a local operator possessing the nroverties considered in Chapter I is

associated to the family {Ui v ni}.

In Chapter III we study the tonological nromerties of the
transition function of the nrocess constructed in Chapter I. Using
the results of Chapter II we show that the transition function maps
the cone of all lower semicontinuous functions into itself and the
range of the resolvent has a "local density" propertv. If X is compact
and if there is a function h>0 such that Lh=0, then the transition
function maps the space of all continuous functions into itself.

The study of a product space is a classical theme in potential
theory. While the early papers (K. Gowrisankaran [18], R. Cairoli [12])
study functions on the product smace which are related to the struc-
tures of the terms of the nroduct, in Chanter IV of the nresent work
we follow the idea of the nrobabilistic work of R. Cairoli [11],
constructing a structure on the product space and studving this struc-
ture. Namely we construct local operators on product snaces. This
subject is a particular asnect of the general nroblem of constructing
the notion of product in potential theory (a problem suggested by
N.Boboc) .

In Chapter IV we first consider two local operators Ll, L2 on

locally compact spaces X, , X2 which possess bases of regular sets.

1
Then we construct the sum L1+L2 on X, x X, and prove that the product
of two regular sets is reqular (for L1+L2). Then we prove a similar

result for the sum of a series of local operators on the product of a



sequence of compact spaces. Further we consider a local operator, L,
and construct the operator L-d/dt. (A similar construction within

a different framework was made by J.P. Roth [34]). Then we are
interested in those local operators which yield Bauer snaces and the
operator L-d/dt allows us to characterize those operators with the
property that, by addition they also yield Bauer spaces on product
spaces. (The problem was also treated by E.Popa [33] and U. Schirmeier
[36] in the frame of harmonic smaces in the sense of C.Constantinescu
and A.Cornea. The key technical result is Lemma 5.5). Finally it is
shown that the sum of a series of local operators preserves these
properties under suitable conditions. This result extends a (more
precise) result of C.Berg to compmact spmaces. (He constructed a Brelot
space on the infinite dimensional torus [3}).

In Section 1l.o0f Chapter V we consider the case when the state
space, X, is a locally compact abelian group. We show that for a aiven
translation invariant structure of the tyne considered in Chapter II,
there exists a unique translation invariant local operator associated
to it. In Section 2.we show that local operators can be used on a
harmonic space in the sense of Constantinescu and Cornea (althogh
there is no base of regular sets) and all the results from the previous
sections rest valid in a natural analogous form.

Chapter VI is devoted to Feller resolvents. In Section 1. we
present an improvement of a wellknown result on convex cones of lower
semicontinuous functions. In Section 2. we give a very general cons-
truction of Hunt processes. Section 3. contains an excessiveness
criterion. Section 4.presents a characterisation of those Feller

resolvents which yield continuous Hunt processes (Corollary 4.12).

By analogy with the study made in Section 5.0f Chapter IV,
the final note gives a characterisation for the semigroups of compact
contractions in Hilbert spaces.

Most of the material in this book was previously presented
at the Potential Theory Seminar in Bucharest.

I would like to express my thanks to professors N.Boboc,
Gh. Bucur, A.Cornea and I.Cuculescu from whom I learned potential
theory and Markov Processes.

The expert typing was done by Camelia Minculescu, to whom
I want to express my gratitude.
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NOTATION

For a locally compact space with a countable base, T, we
shall denote by C(T) the space of all real continuous functions and
by CO(T), Cc(T), Cb(T) the subspaces of functions vannishing to
infinity, of functions of compact support, of bounded functions. The
space of all real Borel functions on T will be denoted by B(T) and
the subspace of bounded Borel functions by Bb(T)'

A kernel on T will be a positive linear operator V from Bb(T)
into B(T) such that for each x e T the map f — Vf(x) defines a Radon
measure. The measure associated to x is denoted by Vx, i.e. Vx(f)=
=V£ (x) .

All terminology and notation on Markov orocesses will be that
of [6]. Particularly if (Q,M,Mt,xt,et,Px) is a standard process with
state space (E,E), f is a nearly Borel positive function and A is a
nearly Borel set we use the notation T,=inf{ t> 0//Xt£ Al , P;f(x)=

=Ex[exp(—>\TA) .f(XT TA<-o] and P,=P

.

> o

),
A

We say that a standard process is continuous if t -—PXt is
a.s. continuous on [0,3).
For the terminology and notation from the theory of harmonic

spaces which is not specifically explained here we refer to [13].

I. LOCAL OPERATORS

1. General Pronerties

1.1. A sheaf of vector spaces of real continuous functions on

a locally compact space, X, is a family { A(U)/U open set} such that:

o
1 For each open set U, A(U) is a vector space of real
continuous functions on U;

(o]

27 If U, €U, are open sets and f € A(U2) then f“HfA(Ul);
3° 1f {u,/ie I} is a family of open sets, U= U U; and
ierTI

f € C(U) satisfies flU € A(Ui), then £ € A(U).
i

1.2. A local operator, L, on a locally comnact space, X, is
a pair ({D(U,L)/U open set} , { (L,U)/U open set}), where {D(U,L)/U
open set} is a sheaf of vector smaces of real continuous functions
on X and { (L,U)/U open set} is a family of linear operators such
that:

1° (L,U) : D(U,L)—— C(U) is a linear operator.



2O If U, V are onen sets, UcV and feD(V,L) then

(L,U) (£ U)=((L’V)f)lu (i.e. L is a sheaf morphism from {D(U,L)/U
open set} into the sheaf of all continuous functions).
We shall use the notation (L,U)f=Lf for any open set U and

any f eD(U,L) (just like in the case of differential operators in Rn).

1.3. In this section we shall consider a locally compact space

with a countable base, X, and a local operator, L, on X. For each x> 0
we denote by LA the operator defined as follows: D(U,Lx)=D(U,L) and
LAf=Lf—Af for any any open set,U,and any fe D(U,L).

1.4. Suppose that U is a relatively compact open set such that

3U#e.
U will be called Dirichlet regular (or D-regular) if:
1° (v) fecC(3U), (F)uec(U) unigue such that u|3U=f .
u“JED(U,L), and Lu=0 on U,
2° if £ 0, then the associated function, u, satisfies
u 0.

If U is D-regular and f € C(U) we shall denote by HUf=u, the

function associated to f , Via lO in the above definition. HU may

[3U
be regarded as a linear operator, HU : C(U)—=C(U), which extends to

a kernel on U. If U is D-regular with respect to L, , then we shall

A

use the notation Hg for the analogous object.

U will be called Poisson regular (or P-regular) if:

1° (v) fec(U), (3) ue Co(ﬁ)n D(U,L) unique such, that Lu=-f,

o

27 if £3 0, then the associated function, u, satisfies u) 0,

3° the space DO(U) is dense in CO(U), where
(1) D, (U)= £&D(U,L)N C_(U)/LE€C (D)},

If U is both P-regular and D-regular we shall call it P-and D-regular.
If U is P-reqular and f € C(U) we shall denote by GUf=u, the
function associated to f via 1° in this definition. This way we get

a positive linear operator GU: C(ﬁ)—~’-C(ﬁ), which extends to a kernel

on U. Condition 3° shows that for any x € U the measure cUr*

and hence GU1>0 on U. If U is P-reqular with respect to LA , then Gg
will denote the analogous object (of course G3=GU). If U is P-reqular

is nonnul,

with respect to L, for any 23>0 and fe¢C(U), then
U U
L(Gaf_GBf

which leads to GY-GY=(g-a)GYGY ,
o B a B

U, U, _, .U
) a(Gaf GBf)—(a e)GSf ’

a,8>0, i.e. the rezolvent equation.



1.5. The operator L will be called locally closed ( 24(II)
p.207) if:
(¥) U open set, (¥) {f /ne€ Nlep(u,L), £ —> £, LE —>g

uniformly on each compact set

—> f€D(U,L) and Lf=g.

We remark that L is locally closed provided there exists a
base of open sets which are P- and D-regular. In order to see this we
consider an open set, U, and a P- and D-regular set, V, such that
V<cUu; then we deduce

(2) ®=HZ+GV(-Lm) on v, (¥) 9eD(U,L).

Writting this formula for the sequence {fn} and letting
n—s = we get f=HVf+GV(—g) , which shows feD(V,L) and Lf=g on V.

1.6. The operator L will be called locally dissipative if it

obeys the following maximum principle:
(¥) U oven set, (¥) feD(U,L), (v) xeu,
f(x)» £f on U, £f(x)3» 0 —> Lf(x)<0.

From now on we suppose that L is locally dissipative. Then

L)\, A >0 are locally dissipative. First we are going to state a very
useful form of the minimum principle. Versions of it were proved in
several places (see [17 (I)] 0.145 and [24] (11) p.210) .

1.7. Proposition

Supnose that U is an open set and ¢ € D(U,L) satisfies (o1 1

and L¢<0. If fe€D(U,L), Lf» 0 and limsup f(x)< a, aeRrR, , where « (U)
X = (u)

is the Alexandrov point associated to the locally compact space U, then
fga on U.

Proof

Let us suppose that f(x)3» ata, a» 0 for some x € U. Then
f-(a/2) 9=g verifies

g(x)y» ata/2 and limsup g(y) £ ata/2.
y = (U)
There exists a maximum point,y € U, such that g(y)> g on U.
Then g(y)>» g(x)2 0, and hence Lg(y)§ 0. On the other hand

Lg(y)=Lf(y)-(a/2)Le (y)> 0,

which is a contradiction. Our supposition failed, and hence f(x) < a

for any x € U.

Now we are going to introduce the "local closure" of L. First



we need a version of a result from [34] p.55.

1.8. Proposition

Let V be an open set, {fn/né N}< D(V,L) a sequence such that
f£~—a- £, Lfﬁ———a-¢ uniformly on each compact set, and £ has nonnegative
local maximum in xoé V. Assume that for any neighbourhood, W, of xo
there exist an open set, U, such that xoé U, UcW and ge CO(U)f\D(U,L)

such that g(x0)> 0, Lge¢ Cb(U). Then ¢(xo)$ 0.
Proof

Let us suppose that ¢(xo)> 0. We choose an open set, U, such
that UCV, X € U, ¢>a on U, a€R, a >0, f(xo))f on U and quo(U)
ND(U,L) such that g(xo)=6> 0, |Lg|g a/2. Further we choose né&N such
that Ifn—f|<'8/2 on U and ILfn—¢|< /2 on U. Then we have

£ (x ) +g(x)> £(x )+ g/2 ,

£ (y)+a(y)=£ (yKE(y)+8/2 LE(x ) +8/2 , (¥) yé€ 23U
and
Lfn+Lg=Lfn—¢+¢+Lq> -a/2+a-a/2=0 .

This contradicts 1.7, and hence ¢(xo)$ 0.
1.9. Corollary
Let us assume that the following condition holds:
(V) x€ X, (¥) V a neighbourhood of x, (3) U open set, x€ U,
Tcv, (3) g€C_(U)ND(U,L) such that g(x)>» 0 and Lgé€ C_(U).

Then for each open set, V, and each sequence, {fn}C D(V,L), such that

fn———> 0 and Lfﬁ——ev¢ uniformly on the compact subsets of V it holds

¢=0.

If the requirement from the above corollary is fulfilled, we
may define f, the local closure of L, as follows:

If U is an open set, a function f € C(U) belongs to D(U,E)
if and only if there exist a function ¢€C(U), an open govering of U,

{Ui/ié I}, and for any i€ I there exists a sequence {Q;/ne N}cC D(Ui,L)

such that @i-—> f and L¢i-—>¢(n-—> =) uniformly on the compact subsets
of Ui' Furthermore we put Lf=¢.
We note that from 1.8 one deduces L is also locally dissimnative.
The next proposition is a criterion of P-regularity and also

shows that the kernel GU is supported by U.
1.10. Proposition

Suppose that U is an open set such that 3U#@ and for any



f eC(ﬁ) there exists a function ue'CO(U)n D(U,L) which fulfils Lu=-f
and the space CO(U)n D(U,L) is dense in CO(U). Then U is P-regular
and GU(BU)=O.

Proof

Let uGCO(U)n D(U,L) be such that Lu=-f, f€C(U), £ 0. Pro-
position 1.7 implies ug 0. Thus 2° and the unicity assertion of 1°
within the definition of P-regularity are fulfilled. Further the ope-
rator GU exists and may be extended to a kernel on U. Next we are going

to prove G(3U)=0. Let {¢n}CC(U) be a sequence such that 0s¢n+15 ¢ L1,
o

n\
{¢n< 1§C.U, and W {¢n=0}=U. From 1.7 we get
n

G Il g sup £Go (x) /¢ (x)> 0} & sup { GL(x)/¢_(x)> 0} .

But Gl € CO(U) and so G(3U)= lim G(¢_)=0.
n— ou_ n
Now let u ECO(U)ﬂ D(U,L), LueC(U), Lu£ 0. For x€ U we have

u(x)=G(-Lu) (x)= lim G((—Lu)(l—¢n))(x). The limit being increasing
n—s>
it is uniforme. This leads to condition 3° from the definition of

P-regularity.

1.11. The next theorem due to G.A. Hunt will be used several
times in our paper. For a proof we refer to [30) p.223-224 or [27]
X T 10. An extend study of this subject can be found in [22].

Theorem

Let V : Cb(X)——a-Cb(X) be a positive linear operator satisfying

the complete maximum principle, i.e.:
iff,gécbﬁx),VfM)éngrﬂ, (¥) x € {£>0},

then V£ Vg+1 .
Then there exists a unique family [VA/AZ 0} of positive linear opera-
tors on Cb(x) such that

(o]

1 Va-VB=(B-u)VavB ¥ a,B>0 ,
v it AV, 11, AS0 ,

) _

3% Vv .

1.12. Now we are going to denict several relations between the

various kinds of regularity.
1° If an open set, U, is P-regular, then it is P-reqular with
1
respect to Lk for any A>0 and the resolvent [G;/A>0} is sub-Markov:

U
<
AGAl_l.

This is a consequence of the above theorem applied to the ope-



rator GU. The complete maximum princiole for GU results from 1.7.

2O

U is P-regular with respect to LA for any A>0 and the resolvent

If U is P-regular with resmect to Lq , for some a>0, then

{Gy/2>0} is sub-Markov.

This results from Theorem III.3.1 of F.Hirsch [22].

3° If U is P-regular with respect to LA for any A>0 then U
is P-regular (with respect to L) provided there exists fé€ Cb(UMWD(U,L)
such that Lfe€ Cb(U) and Lf<-1.

In order to prove this we choose a>0 such that all£f]1<1/2 and

—onU
put ¢-2Ga( Laf). Then
_ _ U
Lg=2(Lf-a (£+G L _£)) .

Using 1.7 we get |f+GSLquSIIfII, and hence Lg<- which leads to

1,

U . U_,. U . :

lesw for any A>0. Now using the kernel G =lim GA it is easy to deduce
A0

that U is P-regular.
4° Let U be D-regular and suppose there exists A>0 such that

U is also P-regular with resmect to L Then U is D-regular with res-

A"
pect to L., and

A
(3) 1Y=n"-)cVxY.
A A
5° Let U be an open set. Assume that L is locally closed and

there exists a P-regular set V such that UCV. If U is P-reqular, then
it is also D-regular and for any £ éCb(v),

(4) cVe-cVe=u"c"¢ on U.

Condition 2° and the unicity assertion from 1° within the de-
finition of D-reqularity are consequences of 1.7. In order to prove
the existence assertion we firstly consider the case when f¢ C(3U) is
of the form f£=G'g,, for suitable f €C, (V). Then u=GZ—Gg fulfils

ulaUZf and Lu=0 on U. For a general f € C(3U) one makes an aporoximation.
6° Let U be an open set and V a P-regular set such that UC V.

If U is D-regular then it is also P-regular. The proof of this assertion

is similar with the preceding one.

2. The Markov Process Associated

to a Local Operator

Let X be a locally compact space with a countable base. In
this section we study a local operator on X, L, which is locally

dissipative and suppose that the family of all P- and D-regular sets



o L.
forms a topological base. Then from 1.12, 1~ we deduce similar proper-

ties with respect to the operators LA , A>0.

2.1. Proposition

a) Let V be a P-regular set. There exists a continuous Hunt

process (Q,M, Mt r Xy 8y P*) with state space V such that for each
o € CO(V) and t>0 the function ¢(x)=Ex[m(Xt)] satisfies ¢eCO(V) and
(1) G\)‘]f(x)=Ex[£ exp(-At)£(x,)dt] , (¥) x €V, 220,

£ er (v) .

b) If U is a D-regular set, ﬁk:v, then each point xoe U

is regular, i.e. EXO[T >0}=0, and the following equalities hold:

VU

(2) HEf(x):p\*,\Uf(x) , (¥) x€T , 120, fec(v),

TV\U

(3) fo(x)=EX[f exp(-at)£(x)dt], (%) xeU, 120, £eCy (V).
0

In order to prove this proposition we need the next three
lemmas:

2.2. Lemma. Let (Q,M,MH)Q@t ,P*) be a standard process with
state space E. Assume that there exists a sequence {Bn} of nearly Borel

sets such that UB =E and R(Bn)(x)=Ex[7xB (Xt)dt], (x€ E) is a bounded
n O “n

function for each neN. Suppose that A is a nearly Borel set and H is
a kernel on E such that

1° H(E\A)=0,

2O Hf{f for any excessive function f,

3° there exists a family A of excessive functions such that:
(a) any two measures on E, uy and v,coincide nrovided u (f)=v (f) for any
fe A; (b) Hf is excessive for any f€ A and Hf=f on A.

Then PA=H and all points in A are regular.

Proof. Let fe A, and g be an excessive function such that f<g
on A; them from 1° and 2° we get Hf <Hg <g and on account of 3o(b)
deduce

Hf=inf { g/excessive, f <g on A}.

On the other hand Hunt’s balayage theorem ([{67] p.141) gives us PAf:SHf
and PAf(x)=Hf(x) except possibly for those points, x, in A which are
not regular, i.e. except for a semipolar set ([6] »n.80). But P,f is

also excessive ([6] p.73), hence Hf=PAf. Now condition 3°(a) implies



H=PA .

If x€eA then conditions 3°(a), (b) show that H =€ €x. Thus

R(B) (x)=E*[R(B) (X )] or EY [fxB (x,)dt]=g" [/XB (x,)dt] for any
A
Ta
néN. We deduce E [I XB (X, )dt]=0 for any ne N, and hence E [T )0] 0.

2.3. Lemma. Let g éCb+(V) and put

g (x) if x€VN\U
h(x)=

HUg(x) if xe€U
Then k is excessive for the resolvent {GYIX >0}, i.e. xGYh -+ h, as
A+>o , and xGYhsh, for A>0.

Proof. Since V is P-regqular we know that GY(CO(V))=CO(V) for
for each 1>0. Therefore AGYf»f, as \»», for each feCo(v). Since héCO(V)
we have only to prove the inequality AGVh<h. From 1.7 we get hg<g and

AG h<AG g<g =h on V~U. On the other hand L (AG h-h)=0 on U. Again 1.7
gives us AG h<h on U.

The next Lemma was proved by Ph.Courrége and P.Priouret in
Annexe 1 of [14].

2.4. Lemma. Let (Q,M, Mt,Xt,e ,Px) be a standard orocess with

t
state space E. If there exists a base of open sets, U, such that

P U(E§ﬁ)(x)=0, for each U€U and each xe€U,

then the process is continuous.

7
Proof of Proposition2.1. a) The resolvent {G;|x>0} satisfies

the conditions from the Hille-Yosida theorem, on the Banach space
CO(V). Thus we get a (Co)—class semigroup of positive sub-Markov
operators on CO(V). Further we apply the theorem from [6] p.46 and

get a standard process (Q,M,Mt,X ,P*) with state space V which ful-

tr%¢
fils relation (1). The continuitv of the process results from Lemma
2.4 by using relation (2), which will be proved below.

b) In order to prove (2) we are going to anply Lemma 2.2

with respect to the kernel HU (extended to V by taking HU’x=ex for

XeVN\U) , the set A=V\U and the family A=GV(Cb+(V)) .



Conditions 1° and 3° (a) from Lemma 2.2 are obviously

fulfilled. From 1.7 we get HUGVggGVg for each gECb+(V). Then the

monotone class theorem shows that this inequality is still valid for
each feBb+(V). Further we get HUfsf for each excessive function, by

approximating f with potentials. This cheks condition 2° from 2.2.
Condition 3O(b) 2.2 results from Lemma 2.3. Thus relation (2)

follows from Lemma 2.2.
Now let fer(V). The strong Markov property gives us

X
T
HUGVf (x) =EX[E V\U[Zf(xt)dt =" [F fxpat ].
Tyu

This relation together with 1(4) lgads to (3).

2.5. Theorem. There exists a continuous standard process
(Q,M,Mt,Xt,et,Px) with state space X such that for any P-regular set,U,
U X TE\U
(4) Glf(x)=E C é exp(—xt)f(xt)dt], (¥) xe€euU,

(v) £ GCb(U) + (¥) A20.

If another continuous standard process fulfils (4), then it has the

same transition function.
This theorem is a consequence of the next theorem proved by

Ph.Courr&ge and P.Priouret [15] 2.4.2. (See also P.A. Meyer [47) and
M.Nagasawa [43]).



