Cambridge Computer Science Texts 22
Program

- Construction
R.G.STONE & D.J.COOKE

nxnuxxxg

b‘d
Shedi
'xn}:!:{xri
)-‘run,gax y
ok
e e

)

| o A S

55 Cambridge Computer Science Texts

Program construction

R. G. Stone and D. J. Cooke

Department of Computer Studies, Loughborough University of Technology

Cambridge University Press
Cambridge

London New York New Rochelle
Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1987
First published 1987
Printed in Great Britain by Billing & Sons Ltd, Worcester

British Library cataloguing in publication data

Stone, R.G.
Program construction. — (Cambridge computer science texts; 22)

1. Electronic digital computers — Programming
I. Title II. Cooke, D.J.
005.1 QA76.6

Library of Congress cataloguing in publication data

Stone, R. G., 1950—
Program construction.

(Cambridge computer science texts; 22)
Bibliography: p.
Includes index.
1. Electronic digital computers — Programming.
I. Cooke, D. J. (Derek John), 1947
II. Title. III. Series.
QA76.65767 1987 005.1 86-12954

ISBN 0 521 26823 0 hard covers
ISBN 0 521 31883 1 paperback

MP

Pretface

This text promotes the disciplined construction of procedural programs
from formal specifications. As such it can be used in conjunction with any of
the more conventional programming texts which teach a mixture of
‘coding’ in a specific language and ad hoc algorithm design.

The awareness of the need for a more methodical approach to program
construction is epitomised by the use of phrases such as ‘software
engineering’, ‘mathematical theory of programming’, and ‘science of
programming’. The hitherto all-too-familiar practices of ‘designing’ a
program ‘as you write it’ and ‘patching’ wrong programs being more
appropriate to a cottage industry rather than a key activity in the current
technological revolution.

The cost of producing hardware is decreasing while the production of
software (programs) is becoming more expensive by the day. The
complexity and importance of programs is also growing phenomenally, so
much so that the high cost of producing them can only be justified when
they are reliable and do what they are supposed to do — when they are
correct.

No methodology can exist by which we can produce a program to
perform an arbitrary task. Consequently that is not the aim of the book.
What we shall do is to show how, by using a Program Design Language and
templates for your chosen target language, you can develop programs from
certain forms of specification.

Although programming is essentially a practical activity, the degree of
formality adopted throughout the development process means that
sufficient information is available to enable correctness proofs to be
investigated if and when required. Moreover, the structured programming
forms used throughout the text are all supported by verification rules
derived from their total correctness proofs — the notion of correctness never
being far from our thoughts.

The material presented has grown out of courses presented to first year
Computer Science undergraduates, to ‘conversion” M.Sc. students and in

X Preface

industrial short courses in software engineering, and as such has been under
development since 1980.

During the evolution of the teaching material included herein we have
been influenced by many sources. Of particular note is the work of Cliff
Jones (now at Manchester University but previously at Oxford PRG and
various IBM research establishments), on Specification; and the work of
John Darlington (now at Imperial College, London and previously at
Edinburgh University), on Program Transformations. At a more tangible
level we wish to record our thanks to Terry Butland of UKAEE Winfrith
and Morry van Ments of Loughborough’s Centre for Extension Studies for
their help in organising our industrial courses, to our colleagues, Mike
Woodward and Dave Gittins, who helped modify earlier drafts of the text.
to Jacqui Bonsor, Carole Hill and Deborah Harrison who produced the
bulk of the typescript and to Ernest Kirkwodd of Cambridge University
Press for his encouragement and patience.

R. G. Stone
D. J. Cooke
Loughborough, 1985

1.1
1.2

2.1
22
2.3
24
2.5
2.5.1
252
253
254
255
2.5.6
2.6
2.7
2.8
2.9
2.10

3.1
32
33
34

4.1
4.2
43

Contents

Preface
A modern approach to computing

An appraisal of the current situation
A way ahead

Specifications I

The nature of a specification

Pre and post conditions

Type constraints

Sequences of operations

More on types

Primitive and constructed data Lypey
Pairs

Triples

Tuples

Lists

Sets

The characteristics of a specification

Refinement and transformation of specifications

States in specifications
States vs. Input/Output
Conclusion

Diagrams

Diagrams used in the program development process

An algebra of diagrams
Other diagramming systems
Graphs, networks and trees

Specifications 11

Concise notation

Transformation and proof in specifications

What comes next?

X

11

11
13
13
16
18
18

21
22
24
28
31
32
32
37
37

39
39
46
50
55

61

61
63
70

vi

5.1
52
5.3
54
54.1
542
543
54.4
54.5
54.6
5.5
5.6
5.7
5.8
5.9

6

6.1
6.2
6.2.1
6.22
6.3
6.3.1
6.32
6.4
6.4.1
6.4.2
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2

7

7.1
72
7.3
74
74.1
742
743
1.5

Contents

PDL

Imperative and declarative languages
Why a PDL?

The PDL stage

The description of a PDL

Function definition

Statement

Statements

Type

Variable

Expressions

PDL data types — list and record
Representing specification data types in PDL
Examples

Other PDL issues

PDL summary

Code generation

Templates

Templates for Pascal

Templates for control structures in Pascal
Templates for data structures in Pascal

Templates for FORTRAN

Templates for control structures in FORTRAN
Templates for data structures in FORTRAN
Templates for COBOL

Templates for control structures in COBOL
Templates for data structures in COBOL
Templates for a minicomputer assembly language
Templates for control structures

Templates for data structures

Templates for a microprocessor assembly language
Templates for control structures

Templates for data structures

Verification

The implication operator

Control-flow diagrams and data-flow specification diagrams
Sequencing and alternation

Repetition

Simple recursion

Quantifiers and induction

Iteration

Conclusion

72

72
75
76
78
78
79
79
80
81
81
82
83
85
86
87

88
88
89
90
95
99
100
106
115
115
121
126
129
139
143
144
151

155

156
166
171
183
184
195
201
215

8.1
8.2
8.3
8.4

9.1
92
9.3
9.4
94.1
942
9.5
9.5.1
952

10

10.1
10.2
10.3
10.4
10.5

11

11.1
11.2
11.3

12

12.1
12.2
12.3
12.4
12.5

Oaw»

Contents

Examination of templates and target code

Assignment statements
Control statements
Parameter passing
Summary

Abstract data types

ADT example — a siding

ADT example — an In_Tray

ADT example — LR Lookup store
ADT example — a binary tree

Recursive implementation of tree operations in PDL
Non-recursive implementation of tree operations

On preserving ADT discipline
What is ADT discipline?
Data Type Encapsulation

The mathematical basis of abstract data types

Booleans

Lists

Some numeric types

Sets

Equations versus conditions

Utilisation of existing programs

Testing for good structure
Restructuring of unstructured programs
Analysis of programs

A small scale study — topological sorting

Problem formulation
Transformations

Towards PDL

Data structure considerations
PDL

Appendices

Glossary of symbols

Syntax of standard specifications

The description of a PDL
Transformations that remove recursion

References

Index

vil

217

218
219
224
226

227

228
233
236
237
240
242
254
254
258
262
262
269
271
282
285

289

290
302
309

326

326
331
333
336
340

342
344
348
353

365
367

1

A modern approach to computing

1.1 An appraisal of the current situation.

Is anything the matter?

In the early days of computing the machines were not very
powerful, there were not many of them and few people had high
expectations of them. All that has changed. Computers seem to have
become an essential part of everyday society and large numbers of people
are employed in supporting existing computer systems and creating new
ones.

Although the use of computers is widespread the public image of
computers and the computing profession is in need of improvement.
Everyone has their own story to tell of the time when their enquiry was
rejected with the excuse that ‘it’s not possible since we installed the
computer system’. There have been some well-publicised disasters with new
computing systems.

Yes, something is the matter!

What is wrong with computing today?
Is it the machines? Well they are cheaper, smaller, faster and more
reliable than they used to be. No, they do not seem to be the problem.

Isit the programs then? Software today is more expensive, more complex,
but no more reliable than it used to be.

Why should this be? Is it the fault of the programmer teams? Are they not
as clever as they used to be? No, they have been asked to do the impossible.
Itislike asking a child who has built toy houses out of Lego bricks to design
and build tower blocks for people to live in. Using another analogy, it is like
asking people who have discovered how to cross streams by stepping-
stones and planks of wood to build a suspension bridge over an estuary.
This is the scale of the increase in complexity that has faced programmers in
recent years.

The increase in complexity is graphically illustrated by Figure 1.1.

2 A modern approach to computing

What is being done?
Well until recently, not a lot. It has taken a long time to obtain
widespread acknowledgement within the computing community that a

problem exists. Now that this is established progress is being made — albeit
slowly.

Fig. 1.1

System complexity

1960 1970 1980

Al
i=

Documentation

An appraisal of the current situation 3

There were high hopes that ‘Structured Programming’ would be the
solution. This was only marginally successful but crucially important for
creating the idea that training and retraining computer professionals was
possible and necessary.

The construction industry

Pursuing the bridge building analogy a little further it is quite clear
that real bridges are not built by dumping ballast, concrete, etc., into the
middle of the water on day one. In fact a prolonged process of surveying,
designing, costing, model building and testing is performed before any
construction is begun. This bridge construction process is entirely
appropriate for the permanent large scale structures capable of supporting
road or rail traffic.

(Of course this is not an appropriate solution for the hiker who simply
wants to cross a stream to get to his destination before sunset. He will use
only the immediately available materials such as stones, branches, etc., and
he will experiment — e.g. to see if it will hold his weight.)

The fault with program construction in comparison to bridge
construction is that no equivalent of the detailed drawings of the design of a
bridge is in general use. That is not to say that there are no diagrams —there
are—but they tend to be used in a ‘cavalier’ way, not as part of a methodical
process.

The world of the artist
Let’s move away from the construction industry and consider a
possible comparison between program construction and oil painting.

Because it is possible to overpaint any colour with any other using oils,
we could say that it does not matter if mistakes are made — they can always
be painted over until we get it right.

This is a useful analogy with computing because apart from a small
percentage of control programs (notably space shuttle landing programs)
the consequences of errors in programs are not disastrous. They are
frustrating, cost time and money to put right but are not disastrous, so why
bother to get the program right first time?

The snag is that the ability to overpaint does not in itself make the person
holding the paintbrush into a master artist. In fact the greater the artist the
less likely their need to overpaint!

4 A modern approach to computing

The detection of errors

It is symptomatic of the state of computing that errors are still
known as ‘bugs’, in an attempt to pass off the blame onto some unnamed
interfering force that spoils our otherwise perfect programs. (The term ‘bug’
originates from the days when computers contained large numbers of
electromechanical relays into which insects could, and occasionally did,
penetrate thus preventing normal operation — those days have passed but
the term is still with us!)

Testing, whether performed by the originators of software or specialist
teams (or the customer!), may reveal some errors which can be ‘corrected’.
What then? Who knows if there are as yet undetected errors in the original
code or new errors that have been introduced with the ‘corrections™

If you were an astronaut, would you be satisfied with the statement that
‘all known bugs in the shuttle landing program have been eliminated’? You
would want proof that the program would not fail! Alright, but what does
that mean? Proofs are available as a tool only in mathematics —we will have
to find a way of discussing programs as mathematical objects.

The distribution of effort

There is undeniably a sense of achievement to be had from ‘getting
a program to run’. People who have the ability to ‘fix’ problems in programs
that have defeated everyone else are highly valued. But in the larger systems
currently being built far too large a percentage of project time is being spent
on this activity. Much more effort is needed in the early stages to minimise
the need for ‘testing and debugging’. This means getting the specification
right at the beginning and sticking to it.

A powerful argument for getting things right at the beginning is that the

cost of correcting errors increases dramatically the later the error is
discovered during the production of a system (see Figure 1.2).

What is in a specification?
What does the specification of a bridge achieve? In order to be
useful the design must be

concise not full scale, no irrelevant detail, but still representing
the intended bridge adequately

consistent plan and elevation agree

precise no ambiguities.

These are exactly the requirements for specifications of computer software
only the medium for expressing the specification is different.

Cost of error | 7
correction |,

An appraisal of the current situation

Flowcharts and other drawings have been tried and found wanting. The
English language has been tried and found to be too ambiguous — or if not
ambiguous then too verbose. The language that is known to be concise and
precise that is currently being encouraged for use in specification is
mathematics — which also has the advantage of allowing consistency proofs.

A revolution

The scenario sketched out up to now is that for a revolution in
computing. There is a desperate need for formality, the ability to work with
mathematical notation, and above all a desire to create high-quality correct
software. The skills of coding ingenuity, optimisation and patching are
becoming less important in favour of formal specification and systematic
implementation with the backing of the rigour and precision of

mathematics.

Fig. 1.2

/
Cause

Located

N

N\

-
-
-

|
|
|
I
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
I
|
I

|
|
|
|
[
|
|
|
|
|
|
I
1

Requirement High-level Low-level Coding Unit test System test Customer

specification design design use

6 A modern approach to computing

1.2 A way ahead

So, there is a problem. Much Computer Science research over
recent years has been directed at alleviating this ‘software crisis’ and the
methods presented here incorporate some of the more tangible results to
emanate from this research. We shall present a practical methodology for
constructing procedural programs from formal specifications, in such a way
that the individual steps can be justified (mathematically if necessary).

This book is not a course on algorithm design — such a course requires
more detailed study relative to the specific problem domain, such as sorting,
numerical analysis, file processing, etc., all proper subjects in their own
right. Nor is it a book on ‘writing programs in X’ (name your own X!
although coding in some specific language is necessary of course.

Our intention is that you should be able to take a specification, written in
a particular Specification Language, and, using a Program Design
Language (PDL), extract a program plan which is subsequently encoded in
an executable Target Language. Currently, specification languages are in a
state of flux. We have chosen to base our presentation on VDM — the
Vienna Definition Method, named after the IBM Vienna Laboratories
where it was originated — which is the only such language to have appeared
in a text book [20]. (Other systems gaining support but not yet generally
seen outside of research journals and conference papers are ‘Z’ — see [17] for
a very readable example of a Z specification — and languages variously
called OBJ and CLEAR, etc., developed by Goguen and Birstall and their
fellow workers [16]. The equational systems presented in our Chapter 10
closely follow the style of CLEAR.) At the other end of the spectrum, typical
target languages are Pascal, FORTRAN and assemblers, but the choice
here is almost limitless.

Once into PDL the remainder of the construction process is largely
‘handle-turning’ and hence may be automated; the earlier part cannot yet
be treated in this way — there would be no need for conventional
programmers if this were so.

Of necessity our specifications are formal — if a specification is to be
translated into a program which causes a computer to react in a purely
mechanistic way then the same level of formalisation must be inherent in the
specification. Construction of the specification is non-trivial, it requires
detailed knowledge of the application subject area and an understanding of
how the user interfaces with the computer system. This is a problem of
ergonomics and is not addressed here.

For reasons discussed at length in the body of the text, we shall restrict
the way in which we interface with (real) target languages. Not to do this

A way ahead 7

would necessitate extensive knowledge of the semantics of the particular
language and its implementation. The approach adopted gives ample scope
for object code optimisers to make the code more efficient; efficiency being a
much lower priority than the correctness of the program as delivered by us.
The entire methodology is based firmly on formal specifications and the
reader will be better equipped to appreciate how they are to be used after
they have been introduced in Chapter 2. Nevertheless, in the hope of
whetting the appetite we now attempt a brief overview of our modus
operandi, our plan. In keeping with our philosophy of using diagrams as a
legitimate aid to ‘sorting things out’ we shall use a diagram here.

Fig. 1.3

- (the old route) Executable
2. Specifications — Target Code

8.
(Template |
Definition)]

7. (Proofs) 6. Templates

4. Transformed
Specifications
~
—_

7. Verification

8 A modern approach to computing

In this diagram the numbers refer to our chapters, the solid lines (——)
relate to the practical stages in developing code to satisfy a specification, the
chained lines (---—- - —)indicate where formal justification can be provided
to ensure validity of these methods, and dashed lines (-————) show other
logical connections. The remaining arrow (+-) is only for completeness
and indicates the old, insecure, link between the problem and an answer
(not necessarily a solution!). Notice that it does not have an associated
‘proof” arrow although one can be found by going via 4, 5and 6 (or 4, 5 and
9). To take thislogical route is to admit the possibility of a stepwise practical
approach, voila!

Asalready noted, Chapter 2 sees the introduction of specifications. It is in
the users interest to ensure that what is specified is exactly what he wants
specified. This is where logic programming languages come into their own,
programs in such languages being of similar structure to specifications.
However implementations of such languages are too inefficient for the
majority of ‘final’ systems. At their current stage of development logic
programming languages are probably most suitable for prototyping
(checking out specifications) and as such lie outside the scope of the text.

Diagrams can be used to represent the flow of data through a specification
as well as control flow through conventional (procedural) programs. The
disciplined use of diagrams is the subject addressed by Chapter 3 and this
leads naturally to the specifications in Chapter 4 which presents a glimpse
of how we may transform specifications. Ultimately we wish to move from a
logical form to a functional one from which we can extract a procedural
program. This aim —which is attainable for those tasks which are soluble by
computer, although there are theoretical limitations — is a considerable
challenge.

As an intermediate goal we introduce PDL in Chapter 5 and then, in
Chapter 6, consider how to realise PDL in more familiar languages. Our
Program Design Language is similar to Pascal and Algol 68, but is neither.
It has simple semantics, which are discussed in Chapter 8, and can be
extended by the addition of Abstract Data Types (ADTs) to create a higher
level PDL in which the data types are oriented more to particular
application areas. These ADTs are introduced in Chapter 9.

Formal questions relating to PDL and its possible extensions are
discussed at some length in Chapters 7 and 10. Essentially these look at
the requirements of correctness theorems. Knowledge that a correctness
theorem can be proved for a given specification/program combination is
enough, we don’t need to prove it again. However, if such a proof is known
then so is the program and we need not rewrite it; if any aspect of the

A way ahead 9

problem is new then we ought to consider how to formally verify that our
‘solution’ is a solution. Details of such proofs can often be omitted or
checked by an automated theorem prover but the program constructor will
still be required to know how the specification, the program and the proof
inter-relate.

Chapter 11 tackles the question of how to cope with large, existing,
important programs; how to rationalise their existence. In a perfect world
such potentially ‘dodgy’ programs would either not exist or could instantly
be ejected and replaced by verified software. This is not so, and hence we
have Chapter 11.

Finally, Chapter 12 includes a small case study. This is complete except
for full formal proofs. Such proofs would probably double the size of this
book.

In teaching courses based on this material, notation and terminology has
always been a problem. In an undergraduate context, when timescales are
much larger and a proper computer-oriented mathematics course is run in
tandem, little difficulty is experienced by the student. In the case of
industrial short courses or post-graduate ‘conversion’ courses time itself (or
should we say, lack of it) is the main problem. What is required is a facility to
treat topics in an abstract mathematical fashion. Mathematics here does
not imply such topics as traditional calculus, which is totally irrelevant, but
exposure to almost any kind of algebra would be beneficial. At
Loughborough we use our own local text [8] and the Alvey directorate has
funded the production of short-course material [36] aimed specifically as a
pre-requisite for formal software engineering courses. But the use and
availability of such material is outside of our dictate. Within the confines of
this book we shall attempt to ease the introduction of notation by using two
forms. For instance we may initially write IS_ EQUAL_TO and later, when
the reader is used to ‘saying the words’ and is getting tired of writing so
much, replace it by ‘=". Consistent with using simple arithmetic examples
from the beginning, we shall however presume that the reader can do simple
‘sums’ and is familiar with the symbols, +, —, * (for multiplication), +, <,
<, =, etc. The only other symbol not properly introduced in the text is ‘[’
which is used to indicate the end of a proof; but this is only used in Chapters
7 and 10.

Our assumptions about computers and the readers’ knowledge of
computers are minimal. As viewed through programming languages they
are devices for storing symbolic data, performing simple arithmetic and
logical operations —one at a time — under the control of a list of commands,
with the added facility that we can jump about within this list.

