

4Carole Goble John Keane (Eds.)

Advances
1n Databases

13th British National Conference on Databases
BNCOD 13
Manchester, United Kingdom, July 12-14, 1995
Proceedings

aQ
ng@@ Springer
e

Series Editors

Gerhard Goos
Universitdat Karlsruhe
Vincenz-Priessnitz-StraBe 3, D-76128 Karlsruhe, Germany

Juris Hartmanis
Department of Computer Science, Cornell University
4130 Upson Hall, Ithaca, NY 14853, USA

Jan van Leeuwen
Department of Computer Science, Utrecht University
Padualaan 14, 3584 CH Utrecht, The Netherlands

Volume Editors

Carole Goble
Department of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom

John Keane
Department of Computation, UMIST
P.O.Box 88, Manchester M60 1QD. United Kingdom

CIP data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Directions in databases : proceedings / 13th British National
Conference on Databases, BNCOD 13, Manchester, United
Kingdom, July 12 - 14, 1995. Carole Goble ; John Keane (ed.). -
Berlin ; Heidelberg~ New York : Springer, 1995

(Lecture notes in computer science ; Vol. 940)

ISBN 3-540-60100-7
NE: Goble, Carole [Hrsg.]; BNCOD <13, 1995, Manchester>:; GT

CR Subject Classification (1991): H.2-5

ISBN 3-540-60100-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is
concerned. specifically the rights of translation, reprinting. re-use of illustrations. recitation. broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9. 1965,
in its current version. and permission for use must always be obtained from Springer - Verlag. Violations are
liable for prosecution undér the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995
Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN 10486347 06/3142-543210

FOREWORD

“his volume continues the theme of directions in database research established by
1e British National Conference on Databases. containing the proceedings of the
airteenth conference (BNCOD 13) held in Manchester. UK in July 1995.

The conference enhanced its record of excellence and internationalism: in all 64
zchnical paper submissions were received from 18 countries including Australia,
3razil. Korea. New Zealand. Singapore and USA. Each paper received at least three
-aviews. Of the 64 papers. 14 were accepted for presentation at the conference,
ogether with two internationally respected invited speakers.

The database field is now an established one with regard to conventional ap-
Jlications and structured data types, vet a progressive and exciting one for new
.pplications, such as muitimedia. document management, and CAD. These applica-
:ons demand sophisticated and powerful models. and new operational approaches.

Although the relational model continues to dominate the commercial sector,
pject-oriented data databases (OODB) are maturing and are increasingly influen-
ial in both the commercial and research sectors. This is reflected by the first invited
‘peaker. Rick Cattell of SunSoft, USA. and a leader in the field of OODB stan-
fardisation. He discusses object databases and standards. exploring object database
2chnology and product market directions. comparing object and relational technoi-
7y, and presenting the ODMNG-93 standard for object DBMSs.

One of the chief new application areas that requires the expressivity and so-
nistication of the OODB is muitimedia. The second invited speaker. Arif Ghafoor
¢ Purdue University, USA, considers muitimedia database management. He argues
nat multimedia database systems will need data models both more powerful and
nore versatile than the relational model. He suggests that two key requirements for
aulti-media databases are the process of spatio-temporal modelling and the compu-
ational needs for automatic-indexing orf spatio-temporal data.

“he first group of technical papers continues the exploration of new modelling for-
aalisms’ through functional database languages. Courtenage & Poulovassiis con-
‘der extending a functional database language to support subtyping, inheritance
.nd method overloading, whilst Sutton & Smail discuss the update operations im-
clemented in the functional database programming language PFL and the linear
“vpe system which regulates their use.

‘ot only have database applications become more demanding, but so have database
:sers. The first point of contact for a user is the database interface. and surprisingly
:ttle attention has been paid to this essential area. Nordbotten & Crosby investigate
:ser understanding of graphic models: their study in graphic data perception indi-
ates that many details are seen by less than half of the readers and that graphic
tyle is an influence. Haw et al. analyse the communicative process of enquiry and
resent GUIDANCE. a system based on ideas derived from the human communica-
ive practices and conventions. Finally Mitchell et al. propose a conceptual approach
‘o defining interfaces which uses the features of a fully object-oriented data language

to specify interface objects combined with database objects.

Work remains to be done at the system-level of databases: an area addressed in
the third group of papers. Sieg et al. describe and analyse query scheduling policies
that use knowledge of the number of available system buffers and the various hot
points of the queries to provide more efficient processing. Veenhof et al. consider
the optimisation of n-way spatial joins using filters. showing that a filter sequence
can reduce the number of calls to spatial operations. Finally, Gukal et al. present
a dynamic transient-versioning method which both increases concurrency among
transactions and reduces storage overhead.

Concurrency, distributed environments, and data types such as text provide chal-
lenges to, and support for, retrieval and transactions. Hussak & Keane discuss how
transactions that access different types (tiers) of data offer greater scope for con-
current execution by allowing the standard serializability condition to be weakened,
whilst Kim et al. consider the problem of finding an optimal giobal plan for a tree
query in a distributed database. the aim being the minimisation of total processing
time. At a different level, Aaufmann & Schek describe the realisation of a prepro-
cessor for simple text retrieval on top of a relational database.

The ubiquity and evolutionary growth of databases have altered the database en-
vironment to one of federated systems rather than centralised stand-alone systems.
Alzahran: et al. present a software tool to help resolve confiicts between local in-
tegrity specifications in a heterogeneous federated system. Databases that have ac-
cumulated. and continue to accumulate. terabytes of data are commonnpiace: new ap-
plications such as satellite information and scientific data collect information on an
immense scale. Parallel machines offer some solutions to the scale and performance
issues. Watson & Catlow discuss the requirements on such machines of commercial
database processing, and consider how the ICL GOLDRUSH MegaSERVER meets
these requirements. Finally, A'erridoe et al. present an interface between the rela-
tional processing part and the storage system of a paraliel machine. the alm beinc
to perform low-level SQL processing as close to the data storage as possibie.

Acknowledgements

Many people have assisted in the staging of BNCOD 13: the other members of ths
Organising Committee — Ferzana Butt. Mary Garveyr. Babis Theodoulidis and Briar.
Warboys — have all made invaluable contributions to the organisation: the member:
"of the Programme Committee who ensured that all papers had at least three referees
the members of the Steering Committee: the authors who responded on time to ths
deadline: the British Compurer Society for their support: and Alfred Hofmann anc
Springer-Verlag for continued interest in publishing these proceedings in the Lectur-
Notes in Computer Science series. Finally. thanks to our respective departments -
Computer Science at the University of Manchester and Computation at UMIST -
for use of their facilities. and to all our colleagues.

Manchester. UK. May 1995 Carole Goble ¢ .John Reans

CONFERENCE COMITTEES -

JRGANISING COMMITTEE

“arole Goble (Chair)

“erzana Butt (Administrator)
\Mary Garvey (Publicity)
;ohn Keane (Proceedings)

3abis Theodoulidis (Exhibition)

Brian Warboys

PROGRAMME COMMITTEE

Brian Warboys (Chair)
Andy Bailey
Tim Bourne
David Bowers
Richard Cooper
Barry Eaglestone
8ill Edisbury
Carole Goble
Alex Gray

Peter Gray
Frances Grundy
Mike Jackson
KNeith Jeffrey
Mike Kayv

jonn Keane
Jessie Wennedy
Jon Kerridge
Mark Levene
Rob Lucas

[97]

ue Malaika
imon Monk

Ken Moody

Bill Olle

Norman Paton
Alex Poulovassilis
Norman Revell
Phill Robinson
Mike Shave
Babis Theodoulidis
Sarah Wiikinson
Geoff Young

STEERING COMMITTEE

Alex Gray (Chair)
Tim. Bourne

David Bowers

Carole Goble

Peter Gray

YMlike Jackson

Mike Worbovs

()]

University of Manchester
University of Manchester
University of Wolverhampton
UMIST

UMIST

University of Manchester

University of Manchester
Oracle

SIAM Ltd

University of Surrey
University of Glasgow
University of Bradford

TSB Bank

University of Manchester
University of Wales, Cardiff
University of Aberdeen
University of Keele =
University of Wolverhampton
DRAL

ICL

UMIST

Napier University
University of Sheffield
University College London
Kevlink Computers

[BM (UK)

University of Central Lancashire
University of Cambridge
T.William Olle Associates
Heriot-Watt University
Kings College. London
Middlesex University
Sybase

University of Liverpool
UMIST

integrated Computer Technologies Ltd
NATWEST Bank

University of Wales. Cardiff
SIAM Ltd

University of Surrev
University of Manchester
University of Aberdeen
University of Wolverhampton
University of Keele

CONTENTS

‘nvited Papers

Object Databases and Standards

... 1
R.G.G. Cattell (SunSoft. Inc, CA, USA)
Multimedia Database Management: Perspectives and Challenges 12
A. Ghafoor (Purdue University, USA)

Tunctional Databases
Combining Inheritance and Parametric. Polymorphism in a Functional
Database Language P 24
S. Courtenage. A. Poulovassilis (King’s College London, UK)
Extending Functional Database Languages to Update Completeness 47
D. Sutton. C. Smail (Birkbeck College, London, UK)

ser Interfaces
Recognising Graphic Detail - An Experiment in User Interpretation
of Data Models ... 64
J.C. Nordbotten { Unwersity of Bergen, Norway)
M.E. Crosby (University of Hawaii at Manoa. USA)
The Pragmatics of Naive Database Enquiryo ... 79
D. Hew (Harlequin Ltd., Cheshire. UK)
C.A. Goble. A.L. Rector (University of Manchester, UK)
Using a Conceptual Data Language to Describe a Database
and its Interface o e 101
K.J. Mitchell, J.B. Kennedy, P.J. Barclay
{Napier University, Edinburgn, UK)

System-level Algorithms
Scheduling Query Plans with Buffer-requirement Estimates 120
J.C. Steg, D. Pinkney (University of Massachusetts Lowell, USA)
J. Lamoureauz (GTE Government Systems, MA., USA)
Optimisation o'i'SpaniaJ Joins using Filters o il 136

HM. Veenhof, P.M.G. Apers (University of Twente. The Netherlands)
A.W. Houtsmathe (Telematics Research Centre. Enschede, The Netherlands)

An Efficient Transient Versioning Method
S. Gukal. E. Omiecinski. U. Ramachandran
(Georgia Institute of Technology, USA)

Queries and Transactions

Concurrency Control of Tiered Flat Transactions172
W. Hussak (University of Loughborough, UK)
J.A. Keane (UMIST, Manchester, UK)

Two Step Pruning: A Distributed Query Optimisation Algorithm 183
H. Kim, S. Lee. H-J. Kim (Seoul National University, Korea)

Text Search Using Database Systems Revisited - Some Experiments 204
H. Kaufmann. H-J. Schek (ETH Zurich, Switzerland)

Parallel and Federated Systems

Integrity Management in an Object-oriented Federated
Database Environment 226
R.M. Alzahrant (UWCC, Cerdiff, UK)

M.A. Qutaisha (University of Jordan, Jordan)
N.J. Fiddian. W.A. Gray (UWCC. Cardiff, UK)

The Architecture of the ICL GOLDRUSH MegaSERVER 249
P. Watson. G. Catlow (ICL Corporate Servers, Manchester. URK)

W-SQL: An Interface for Scalable, Highly Parallel Database Machines 263
J. Kerridge, D. Walter. R. Guiton

{National Transputer Support Cenire. Sheffield. UK)

Author Index 277

-t

Object Databases and Standards

R.G.G. Cattell, SunSoft, Inc
1500 Salado Drive, Mountain View, CA 94043 USA

Object DBMSs are an interesting new technology now reaching some degree of .
naturity. This paper explores object database technology, product market directions,

-omparisons to object-relational technology, and the ODMG standard for object

DBMSs.

. Introduction

For the purposes of this paper, an object-oriented DBMS, sometimes called an object
DBMS, is a DBMS that adds database capability to an existing object-oriented
crogramming language such as C++ or Smalltalk. An object DBMS differs in
several ways from the other most popular way to incorporate “object” capabilities in
iatabases, object-relational DBMSs, in which SQL-based DBMSs are extended with
object programming language capabilities.

in the commercial arena, examples of object DBMSs include GemStone from Servio,
0, from O, Technologies, Objectivity/DB for Objectivity, ObjectStore from Object
Design, ONTOS from Ontos Corporation, POET from POET Software, and
‘YERSANT from Versant Object Technology. In contrast, Oracle, Sybase and other
najor relational vendors are evolving towards object-relational DBMSs. and new
start-ups such as [llustra and UniSQL have also introduced products in the object-
-elational market.'

Object DBMSs generally provide the following features:

* An object-oriented data medel, including object identifiers, attributes, methods,
and type inheritance.

> Integration with an object-oriented programming language, with transparent or
semi-transparent fetch and store of objects.

> A declaraiive query language similar to the ones provided by other DBMSs,
usually a SQL derivative. ‘

> Advanced data sharing mechanisms, including long transactions, optimistic
concurrency conmol, multiple versions of data, and private data check-out.

The object DBMS products differ in a variety of specific details. Also, simple object
managers, database system generators, semantic/functional DBMSs, and other
ipproaches have been taken in addition to object-relational and object DBMSs. A
aumber of good sources are available comparing the approaches [3.4].

Yes, these preduct names are all trademarks of their respective companies.

2. Contrast of Approaches

There is some debate about the future market directions for object DBMSs,
particularly about the likely success of object DBMSs. versus object-relational
DBMSs, however a fair amount of this debate may simply result from financial
investments of the parties involved.

There are certainly compelling arguments for the object-relational approach. Most
notably, there is substantial investment in SQL-based relational DBMSs, so an
evolutionary approach that preserves that investment is very attractive. Object-
relational DBMSs based on existing products such as Oracle or Sybase boast many
years investment in the robustness, application development tools, data security,
transaction processing performance, and day-to-day business requirements such as
online backup.

Nevertheless, there are reasons to believe that there is a substantial market for object

DBMSs over the next decade, even as object modeling capabilities are added
relational systems:

e Object DBMSs provide a simpler way for programmers familiar with an object-
oriented programming language to use databases; it is not necessary to split
applications into parts written in the programming language and parts written in
the database language (SQL), and it is not necessary to explicitly translate data
from the database to programming language data structures and vice versa.

e In addition to supporting conventional DBMS functionality, object DBMSs deal
with complex data with substantially higher performance; these benefits stem
primarily from client-side caching and seamless integration with the
programming language environment {2].

® Projections from market firms such as IDC indicate that the object database
market is experiencing revenue growth very closely parallel to that of the early
relational industry. As with relational systems a decade earlier, object DBMSs
now offer revolutionary advantages that are not likely to be achieved through
evolutionary development of their predecessors.

Despite these advantages, it is unlikely that object DBMSs will completely overcome
the evolutionary advantages that extensions to relational systems have for business
applications in the near future. Thus, I believe object DBMSs and object-relational
DBMSs will co-exist for the remainder of this decade. They will likely be used for
different kinds of applications, just as different programming languages are popular
for different kinds of epplications. As an example, SunSoft has incorporated both

object DBMS and relationa2l DBMS access into its DOE distributed objsct
environment.

3. ODMG Standard

The importance of a standard for new technology is often underestimated. The
-uccess of relational database systems did not result simply from a better level of data
ndependence and a simpler data model than previous systems. Much of their
success came from the standardization that they offered. The acceptance of the SQL.
;tandard allowed a high degree of portability and interoperability between systems,
simplified learning new relational DBMSs, and probably most importantly,
-epresented a wide endorsement of the relational approach.

All of these factors are as important for object DBMSs today as they were for
-elational systems a decade ago. In fact, these factors are even more important,
Secause most of the products in this area are offered by young companies: portability
aind endorsement of the approach are essential to a customer investing in
applications on these DBMSs. In the case of object DBMSs -the scope of the
-ustomer’s investment is even more far-reaching than with relational DBMSs,
Secause one environment encompasses all of an application's operations and data. A
standard is critical to making applications practical.

In addition to the benefits of standardization, the introduction of ODMG-93 has
relieved another impediment to the use or object DBMSs, namely the existence of a
-owerrul query language. The OQL language in ODMG-93 is more powerful than
SQL, as we shall see, while the query languages in many of the object DBMS
oroducts had been substantially weaker than SQL. or non-existent. Object DBMS
vendors committed to much more query capability in conjunction with ODMG-93.

In 1965 the Object Database Management Group (ODMG) defined a standards
specificatdon, ODMG-93, designed for object DBMSs [1, 5]. Consistent with our
derinition of object DBMSs, the ODMG architecture includes bindings to provide
ransparent persistence and database capability in object-oriented programming
languages, specifically C++ and Smalltalk.

On the abject-relational front, the ANSI X3H2 (SQL) group has been working on
SQL3, which is not yet to "draft standard” stage this year. The thrust of the SQL3
work is aimed at extending the SQL type system and adding procedural capability to
the SQL language. There is little overlap between the ODMG and SQL3 work,
2xcept in the query language portion (Chapter 4 of the ODMG-93 specification, and
the SELECT statement of SQL3).

The ODMG and X35H2 groups have had several ad hoc meetings to decrease

differences in the query language syntax and semantics in their respective standards.
Two actions have resulted from these meetings:

1. The ODMG OQL language has been revised to make it as compatible as
possible with SQL2 (with ODMG object extensions).

89]

. Change proposals are being made to X3H2 to reduce differences in the SQL3
and CQL object extensions. The most fundamental remaining difference is that

i

SQLS3 still treats tables as the only “top level” type, while OQL treats all types as
equivalent (the result of 2. uery or a named top level entity can be of any type).

ODMG was founded because no progress had been made towards standards for
object DBMSs several years after their successful deployment. OMG had formed a
database special interest group and had begun work toward- database-related
standards in the Object Services Task Force, ANSI had formed an Object-Oriented
Database Task Force which resulted in ANSI X3H7, and various ad hoc attempts
were made between vendors, but nothing resulted in standards for object DBMS
products.

ODMG was formed in late 1991, at my invitation to a meeting at SunSoft. The
ODMG work was done by a small group of five vendor employees who committed
one week per month to the ODMG work over two years. As a result, the work
progressed very quickly compared to traditional standards groups. A first draft for all
the major components was produced during 1992, and the accepted version was
published in 1993. The intense ODMG effort gave the object database industry a
"jump start" toward standards that would otherwise have taken many years.

2

Since the introduction of the standard, the ODMG group has expanded significantly;
it now includes Object Design. Objectivity, Ontos, O. Technologies, POET Software,
Servio, Versant, American Management Systems, Anderson Consulting, EDS.
Fujitsu, Hewlett-Packard, Intellitic, MITRE, Persistence Software, Sybase, UniData,
and Texas Instruments. The voting members of ODMG (the first seven in the list)
are committed to support the ODMG-93 standard this vear, and as of this writing
several of the vendors have already released parual implementations. Thus, ODMG-
93 is likely to become a de facto standard for the object DBMS industry.

There are some lessons to be learned about technology and the standards process
from the ODMG history. It is very difficult to do substantial creative work within a
large standards group,-given the number of people and the politics involved. It is
generally necessary to choose a de facto standard as a stariing point, and then make
incremental modifications. Unfortunately, unlike SQL in the relatonal DBMS
world, no accepted starting point existed for object DBMSs. Instezd. the ODMG
work is derived by creatively combining the strongest components of 2 number of
products currently availabie. These products provided demonstrated impiementations
of the standards components that had been tried in the field.

4. ODMG Architecture

ODMG defines a2 common architecture for object DBMS products. The programmer
writes declarations for the application schema (both data and operatio
source program for the application implementation.

3
wn
~~
g,
)
wn
™

£
17

el o
been extended to provide a full database manipuiation languc
transactions and object query. The schema declarations may b2 -

POSTES

The source program is written in a programming language such 2s C++, which &

extension of the programming language syatax, calied the crograrmiming lanmuace

(8]

ODL (object definition language), or may be written in a programming Iang-uagc-
independent ODL that ODMG define:. The latter ODL might be used as a higher-
level design language, or to allow schema definition independent of programming
language.

The programmer’s declarations and source program are compiled and linked wit.h'
the DBMS runtime to prcduce the running application. The application accesses a
new or existing d2tabase, whose types must conform to the declarations. Databases
may be shared with other applications on 2 network; the DBMS provides a shared
service for transaction and lock management, allowing data to be cached in the
application.

The chapters of the ODMG-93 specification correspond to the main components of
the standard:

s Architecture: The first chapter defines a common architecture for an object
DBMS as just described. This agreement on the architecture and approach to
object DBMSs was essential to making this work possible.

s Object Model: ODMG defines a common data model to be supported by object
DBMSs. A subset of the object model provides interoperability across
programming languages. e.g. ailowing the same database to be shared by a C++
and Smailtalk program.

» Object Definition Language: ODMG defines an object definition language
(ODL) as a syntax for the object model. ODL may be used to define an
application schema: the schema can subsequently be translated into declarations
1n the desired programming language.

Coject Query Language: ODMG defines a declarative object query language
(OQL) for querying database objects. OQL can be used by end-users or from
within a programming !anguage. OQL is based on SQL syntax wherever
possible.

°* C++ and Smalltalk Bindings: The remaining. chapters of the ODMG
specification define programming language bindings, also known as the object
manipulation language (OML). Currently bindings have been defined for C++
and Smalltaik. OML binding chapters for SQL3, C, LISP, and IDL are being
considered.

5. Object Model and Definition Language

Much cf the ODMG work is based on Object Management Group (OMG)

specifications [6]. In particular, the ODMG object model is designed as a superset of
the OMG object model.

The ODMG model is based on objects, with object identifiers. Objects can be

categorized into types. All objects of a given type exhibit common behavior and a
common range cf states. The behavior of objects is defined by a set of operations

that can be executed on an object of the type. The state of objects is defined by the
values they carry for a set of properties. These properties may be either attributes of
the object itself or relationships between the object and one or more other objects.

As with variables in programming languages, human-meaningful names may be
given to ODMG objects. A name must refer uniquely to a single object within the
scope of the definition of the name; currently the only name scope defined is a
database. Note that these names differ from primary keys in a relational DBMS;
they are more like relation names, except that they can refer to objects of any type
(not just tables).

Operation signatures define the operations that objects of a given type support. As in
most programming languages, each signature defines the name of the operation, the
name and type of any arguments, the name and type of any returned values, and the
names of any exceptions (error conditions) the operation can raise.

Attributes of object types are similarly specified with attribute signatres. Each
signature defines the name of the attribute and the type of its legal values. Attributes
take literals as values, e.g., strings, numbers, etc.

Relationship signatures specify the relationships in which objects of a given type can
participate. Each signature defines the type of the other object or set of objects
involved in the relationship and the name of a traversal functon (an inverse
attribute) used to refer to the related object or set of objects. Relationships are binary
and are defined between two types of objects (as opposed to attributes that are
defined between an object and a literal). The cardinality of the relationship can te
one-to-one, one-to-many, and many-to-many.

ODMG defines a number of collection types: sets, bags, lists, and arrays. Named
instances of these types can be used to group objects; for example,
hourly_employees might be the employees who are paid by the hour. Thus, there
may be many pre-defined collections of each type. not just the exten: of the type
(e.g., the employee table).

ODMG supports inheritance between types in a subtype/supertype graph. All of the
attributes, relationships, and operations defined on a supertype ere inherited by a

subtype. The subtype may add additional properties and operaticns to introduce
behavior or state unique to instances or a subtype. Muluple inheritance is supported.

The extent of a type can automatically be maintained by the object DBMS, as in
relational DBMSs. The type definer can request that the system automatically
maintain an index to the members of this set. Keys can also be defined on type

extents, in which case the DBMS guarantees the uniqueness of the keyv attributes
within the type extent.

ODMG defines an object definition language (ODL) that is the syntax for the object
model. ODL is intended to define object types that can be implemented in a varety
of programming languages; it is not tied to the syniax or semantics of one
programming language.

There are a number of benefits to having a programming language-independent
ODL. ODL allows the same databasc to be shared across multiple programming
languages, and allows an application to be ported to a new programming language
without rewriting the data schema description. ODL can also be used by design and
analysis tools that must describe an application’s data and operations independently
of programming language. The resulting design can then be used directly or
transiated into a data description language of the programmer's choice. Also, a
schema specified in ODL will be supported by any ODMG-compliant DBMS.

In addition to the programming language-independent ODL, the ODMG
programming language bindings (currently C4++ and Smalltalk) describe optional
ODL syntaxes designed to fit smoothly into the declarative syntax of their host
programming language. Due to the differences inherent in the object models native
to these programming languages, it is not always possible to achieve 100%
consistent semantics across the programming-language specific versions of ODL.
ODMG's goal has been to maximize database schema portability across
programming languages. In the ODMG specification, each programming language

binding documents any extensions or shortfalls with respect to the common ODMG
model.

ODL's syntax is based on OMG's Interface Definition Language (IDL) developed as
part of the Common Object Request Broker Architecture (CORBA). ODMG used
IDL rather than invent vet another language syntax. ODL adds to IDL the constructs
required to specify the complete semantics of the ODMG object model, in particular,
referential integrity and collections. An example ODL definition looks something
like this: :

intsrfacs Professor: =mployes {
extent professors;
attribute String office_numbsr;
attricute enum rank {full, associate, assistant}
relationship Set<Course> teaches inverse is taught by;
grant_tenure() raises (ineligible);

This declaration defines professors to te a subtype of employee with a named extent,
two attributes. a relatonship to courses named teaches (the inverse attribute of
courses is named is_taught_by), and an operation to grant tenure.

6. Object Query Language

There are two ways to retrieve cbjects out of an ODMG database:

1. Objects may te retrieved implicitly by navigating relationships in OML (the
crogramming language), or

2. Objects may be retrieved through the ODMG object query language (OQL), by
identifying objects through predicates defined on their characteristics.

Simple OQL queries are based on a predicate applied to a collection, selecting the
members of a collection that satisfy the predicate. However, more complex queries
may be performed: OQL can perform the equivalent of relational joins, and more.
OQL need not produce an object or a table — it may result in an integer, a list of
object references, a structure, a set of sets of real numbers, or any data structure that
can be defined in the ODMG object model.

OQL queries objects starting with their names, which act as entry points into a
database. In this sense, OQL is like SQL; however, in OQL a name may denote any
kind of object: atomic, structure, collection, or literal. As an embedded language,
OQL allows you to query objects which are supported by the native lanszuage through
expressions yielding atoms, structures, collections, and literals.

The ODMG object model is used as the basis for OQL. The semantics of OQL are
formally defined in the ODMG specification.

OQL differs from SQL2 and the planned SQL3 in some important respects. In
keeping with the object paradigm of encapsulation, OQL does not provide explicit
update operators; it reiies on methods defined on objects for this purpose. Also.
OQL is a declarative query language; it contains no procedural operations as in
SQL3. OQL can be easily optimized by virtue of its declarative nature.

OQL’s syntax is based on SQL, because of the prevalence of this language in the
DBMS world. However, ODMG did not feel constrained to SQL syntax or semantics
in cases where it would compromise the simpiicity or power of OQL. Other concrete
OQL syntaxes will be defined in order :o me:r‘_v the query language into
programming languages. For exampie, ODMG plans to define 2 syntax for
preprocessed C++ thzt is a natural extension of the language as opposed to an
embedded foreign svntax.

OQL provides high-level primitives to deal with collections of objects, but OQL is
not exclusively centersd on the set construct as is SQL. OQL provides primitives ¢
deal with structures and lists. and treats all such constructs with the same efficienc:
and convenience. As an illustration of the scope and nature of CQL, the following
are valid queries:

2+3
president.suborcinates

list (joe, harry) union
select x from x in employees whsrs x.salary > 50000

exists x in procfessors : x.spouss in x.acvisees

W

7. Programming Language Bindings

A “programming language binding" in ODMG is quite different than in SQL. The
ODMG binding is based on extending a programming language's syntax and
semantics in order to provice database capabilities rather than embedding statements
in SQL or another language. It is the goal of an ODMG programming language
binding that the programmer feel there is one language, not two separate languages
with arbitrary boundaries tetween them.

ODMG's goal of programming language integration results in several general
principles. There is a single unified type system across the programming language
and the database; individual instances of these common types can be persistent or
wransient. The programming language-specific binding respects the syntax and
semantics of the base programming language into which it is being inserted. The
binding is structured as a small set of additions to the base programming language; it
does not introduce sublanguage-specific constructions that duplicate functionality
already present within the base language. Expressions in the OML and OQL can be
composed freely with expressions from the base programming language and vice
versa.

An ODMG programming language binding has three components: OML, ODL, and,
CQL. In the C++ binding, ODL is expressed as a class library and an extension to
the standard C++ class detinition grammar. The class library provides classes and
functions to implement the concepts derined in the ODMG object model. The OML,
or object manipulation language, is used for retrieving and operating upon objects
from the database. The C++ OML syntax and semantics are those of standard C++
in the context of the standard class library. The C++ OQL provides a way to retrieve
Zata pased cn predicates.

In the case of C++. a completely seamless interface between the programming
language and the ODL, OML, and OQL technically requires a preprocessor, due to
constraints of the current C++ language. DBecause some customers dislike a
preprocessor, CDMG chose to limit the ODMG-93 standard in some minor ways.
ODMG-93 requires only an ODL preprocessor. A nearly seamless OML solution is
rossible without C++ changes, and a short-term OQL solution is possible with
prccedure cails. This allows vendors o get a standard API out quickly to customers,
and to get some experience with it.

[n addition to the query facilides and data modeiling extensions such as collections
and inverse ataibutes, ODMG extends programming language operations with
database and transaction operations. All access, creation, modification, and deletion
of persistent objects must te done within a transaction on an open database.
Operations are defined on pre-defined database and transaction types. A database
application generally will tegin by opening a database and accessing one or more
named ob‘ects. proceeding from there. These objects are in some sense “root” objects,
in that they lead to interconnected webs of other objects.

