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Preface

During my experience of teaching aircraft structures, I have felt the need for a textbook written specif-
ically for students of aeronautical engineering. Although there have been a number of excellent books
written on the subject, they are now either out of date or too specialized in content to fulfill the require-
ments of an undergraduate textbook. With that in mind, I wrote Aircraft Structures for Engineering
Students, the text on which this one is based. Users of that text have supplied many useful comments to
the publisher, including comments that a briefer version of the book might be desirable, particularly for
programs that do not have the time to cover all the material in the “big” book. That feedback, along with
a survey done by the publisher, resulted in this book, 4n Introduction to Aircraft Structural Analysis,
designed to meet the needs of more time-constrained courses.

Much of the content of this book is similar to that of Aircraft Structures for Engineering Students, but
the chapter on “Vibration of Structures” has been removed since this is most often covered in a separate
standalone course. The topic of Aeroelasticity has also been removed, leaving detailed treatment to the
graduate-level curriculum. The section on “Structural Loading and Discontinuities” remains in the big
book but not this “intro”” one. While these topics help develop a deeper understanding of load transfer
and constraint effects in aircraft structures, they are often outside the scope of an undergraduate text.
The reader interested in learning more on those topics should refer to the “big” book. In the interest of
saving space, the appendix on “Design of a Rear Fuselage” is available for download from the book’s
companion Web site. Please visit www.elsevierdirect.com and search on “Megson” to find the Web site
and the downloadable content.

Supplementary materials, including solutions to end-of-chapter problems, are available for registered
instructors who adopt this book as a course text. Please visit www.textbooks.elsevier.com for information
and to register for access to these resources.

The help of Tom Lacy, Associate Professor of Mechanical and Aerospace Engineering at Missis-
sippi State University, is gratefully acknowledged in the development of this book.

T.H.G. Megson

Supporting material accompanying this book
A full set of worked solutions for this book are available for teaching purposes.

Please visit www.textbooks.elsevier.com and follow the registration instructions to access this
material, which is intended for use by lecturers and tutors.
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CHAPTER

Basic Elasticity

We shall consider, in this chapter, the basic ideas and relationships of the theory of elasticity. The
treatment is divided into three broad sections: stress, strain, and stress—strain relationships. The third
section is deferred until the end of the chapter to emphasize that the analysis of stress and strain—for
example, the equations of equilibrium and compatibility—does not assume a particular stress—strain
law. In other words, the relationships derived in Sections 1.1 through 1.14 inclusive are applicable to
nonlinear as well as linear elastic bodies.

1.1 STRESS

Consider the arbitrarily shaped, three-dimensional body shown in Fig. 1.1. The body is in equilibrium
under the action of externally applied forces Py, P;,..., and is assumed to comprise a continuous and
deformable material so that the forces are transmitted throughout its volume. It follows that at any
internal point O, there is a resultant force § P. The particle of material at O subjected to the force 8P is
in equilibrium so that there must be an equal but opposite force 5P (shown dotted in Fig. 1.1) acting on
the particle at the same time. If we now divide the body by any plane nn containing O, then these two

Fig. 1.1

Internal force at a point in an arbitrarily shaped body.

Copyright © 2010, T. H. G. Megson. Published by Elsevier Ltd. All rights reserved.
DOI: 10.1016/B978-1-85617-932-4.00001-4 3



4 CHAPTER 1 Basic Elasticity

Ps

Fig. 1.2

Internal force components at the point O.

forces 8 P may be considered uniformly distributed over a small area 4 of each face of the plane at the
corresponding point O, as in Fig. 1.2. The stress at O is then defined by the equation

8P
t = lim — 1.1
tveas 5,41510 8A (1.1)

The directions of the forces §P in Fig. 1.2 are such that they produce tensile stresses on the faces
of the plane #n. It must be realized here that while the direction of §P is absolute, the choice of plane
is arbitrary so that although the direction of the stress at O will always be in the direction of §P, its
magnitude depends on the actual plane chosen, since a different plane will have a different inclination
and therefore a different value for the area 4. This may be more easily understood by reference to the
bar in simple tension in Fig. 1.3. On the cross-sectional plane mm, the uniform stress is given by P/A4,
while on the inclined plane m’m’, the stress is of magnitude P/A4’. In both cases, the stresses are parallel
to the direction of P.

Generally, the direction of 8P is not normal to the area 84, in which case it is usual to resolve §P
into two components: one, 6Py, normal to the plane and the other, §P;, acting in the plane itself (see
Fig. 1.2). Note that in Fig. 1.2 the plane containing 8P is perpendicular to §4. The stresses associated
with these components are a normal or direct stress defined as

8Py,

= li 1.2
7 JAITO 6A (12)
and a shear stress defined as
. 8P
=1 .
f Mlin»o 8A (13)



1.2 Notation for Forces and Stresses 5
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Fig. 1.3
Values of stress on different planes in a uniform bar.

The resultant stress is computed from its components by the normal rules of vector addition, namely

Resultant stress = v o2 + 72

Generally, however, as just indicated, we are interested in the separate effects of o and 7.

However, to be strictly accurate, stress is not a vector quantity, for, in addition to magnitude and
direction, we must specify the plane on which the stress acts. Stress is therefore a fensor, with its
complete description depending on the two vectors of force and surface of action.

1.2 NOTATION FOR FORCES AND STRESSES

It is usually convenient to refer the state of stress at a point in a body to an orthogonal set of axes
Oxyz. In this case, we cut the body by planes parallel to the direction of the axes. The resultant force
8P acting at the point O on one of these planes may then be resolved into a normal component and two
in-plane components as shown in Fig. 1.4, thereby producing one component of direct stress and two
components of shear stress.

The direct stress component is specified by reference to the plane on which it acts, but the stress
components require a specification of direction in addition to the plane. We therefore allocate a single
subscript to direct stress to denote the plane on which it acts and two subscripts to shear stress, the
first specifying the plane and the second direction. Therefore, in Fig. 1.4, the shear stress components
are 1y and 7, acting on the z plane and in the x and y directions, respectively, while the direct stress
component is 0.

We may now completely describe the state of stress at a point O in a body by specifying components
of shear and direct stresses on the faces of an element of side éx, 8y, and 8z, formed at O by the cutting
planes as indicated in Fig. 1.5.
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<}+—Cutting plane

X
/ Resultant stress

Fig. 1.4

Components of stress at a point in a body.

The sides of the element are infinitesimally small so that the stresses may be assumed to be uni-
formly distributed over the surface of each face. On each of the opposite faces, there will be, to a first
simplification, equal but opposite stresses.

We shall now define the directions of the stresses in Fig. 1.5 as positive so that normal stresses
directed away from their related surfaces are tensile and positive, and opposite compressive stresses
are negative. Shear stresses are positive when they act in the positive direction of the relevant axis in a
plane on which the direct tensile stress is in the positive direction of the axis. If the tensile stress is in
the opposite direction, then positive shear stresses are in directions opposite to the positive directions
of the appropriate axes.

Two types of external forces may act on a body to produce the internal stress system we have already
discussed. Of these, surface forces such as P1,P»,..., or hydrostatic pressure are distributed over the
surface area of the body. The surface force per unit area may be resolved into components parallel to
our orthogonal system of axes, and these are generally given the symbols X, Y, and Z. The second force
system derives from gravitational and inertia effects, and the forces are known as body forces. These
are distributed over the volume of the body, and the components of body force per unit volume are
designated X, Y, and Z.



z

1.3 Equations of Equilibrium 7
y
Oy
Sx
o
Tyx /
Ty /’
Tzx s T
4-———-‘ xy Sy
sz/l
T
Ox 4—————{, L sz{ ——
; 0 Txz
Tay >
Tz;/"l'yz
sy Sz
o :
i
Oy

Sign conventions and notation for stresses at a point in a body.

1.3 EQUATIONS OF EQUILIBRIUM

Generally, except in cases of uniform stress, the direct and shear stresses on opposite faces of an element
are not equal as indicated in Fig. 1.5 but differ by small amounts. Therefore if, say, the direct stress
acting on the z plane is o, then the direct stress acting on the z+ 8z plane is, from the first two terms of
a Taylor’s series expansion, o, + (30, /9z)8z. We now investigate the equilibrium of an element at some
internal point in an elastic body where the stress system is obtained by the method just described.

In Fig. 1.6, the element is in equilibrium under forces corresponding to the stresses shown and the
components of body forces (not shown). Surface forces acting on the boundary of the body, although
contributing to the production of the internal stress system, do not directly feature in the equilibrium

dx
r,(_,,tSsz? + (rxy +

0Ty
ox

Taking moments about an axis through the center of the element parallel to the z axis

, S )
—8x) 6y6z—x — 1'},,(8x827y

2
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Fig. 1.6
Stresses on the faces of an element at a point in an elastic body.
which simplifies to
] 8x)? d 8y)?
Ty 0y8z8x + 2 Syéz(i — Tyx8x8z8y — O dx 62( Y) =0
: ox 2 ’ ay 2

Dividing by §x8y8z and taking the limit as éx and 8y approach zero.

Similarly,

Txy = Tyx
Txz = Tzx
T =Ty

(1.4)

We see, therefore, that a shear stress acting on a given plane (tyy, Tx-, Ty-) is always accompanied by
an equal complementary shear stress (Tyx,Tzx,Tzy) acting on a plane perpendicular to the given plane
and in the opposite sense.

Now considering the equilibrium of the element in the x direction

d el
ox+ 9% 5x 8y8z —oxbydz+ | Tyx + —%3)/ dxdz
ox ’ ay

a
— 1—},szsz2 + (sz + (;z

zZX

62) ox8y

— T;x0x8y + X8x8y6z =0
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which gives

0oy 0Ty 0Tz
- : —4+X=0
ox ay + 0z
Or, writing Ty, =Ty and Ty, =tz from Eq. (1.4).
dox atﬂ+ﬂ+){:0
ox ay 9z
doy, 0Ty 0Ty
. 9% ) ) Y=0 1.5
Similarly, oy ax + o + (L.5)
00, 0T 0T
= — —+4+Z=0
0z + ox + ay

The equations of equilibrium must be satisfied at all interior points in a deformable body under a
three-dimensional force system.

1.4 PLANE STRESS

Most aircraft structural components are fabricated from thin metal sheet so that stresses across the
thickness of the sheet are usually negligible. Assuming, say, that the z axis is in the direction of the
thickness, then the three-dimensional case of Section 1.3 reduces to a two-dimensional case in which
02, Txz, and 7. are all zero. This condition is known as plane stress; the equilibrium equations then
simplify to

80"\’—%—8““7—}—/\/:0
ax dy
(1.6)
ao'_v aryx 1Y =0
ay ax -

1.5 BOUNDARY CONDITIONS

The equations of equilibrium (1.5) (and also (1.6) for a two-dimensional system) satisfy the requirements
of equilibrium at all internal points of the body. Equilibrium must also be satisfied at all positions on
the boundary of the body where the components of the surface force per unit area are X, Y, and Z. The
triangular element of Fig. 1.7 at the boundary of a two-dimensional body of unit thickness is then in
equilibrium under the action of surface forces on the elemental length AB of the boundary and internal
forces on internal faces AC and CB.

Summation of forces in the x direction gives

_ 1
X85 — 0y8y — Ty bx + X§6x8y =0



