

Tool
10
20
30
40

50
60

£8 8 BIZHEBEEER:

ZEEE

APPENDIX G:
TOOL KIT REFERENCE CARD

Under “How To Use” you will find that all variables are set equal to “#”. See the
back of this card for the value ranges allowed for each variable. Note also that most
of the tools listed below require a DIM statement of:

“DIM P%(99,2),R%(99,2),L%(99,1), C(2,2),T(2,2),W(2,2)".

Description

TURN ON GRAPHICS
RETURN TO TEXT
CLEAR HIRES/MULTI
PLOT A POINT

PLOT A LINE
PAINT A SHAPE

CLIP A SHAPE
DRAW A SHAPE

DRAW A SHAPE

APPLY TRANSFORMS
CLEAR C MATRIX
CLEAR T MATRIX
COMBINE MATRICES
TRANSLATE A SHAPE
SCALE A SHAPE
ROTATE A SHAPE
ZAP!

TURN ON SPRITE SP
TURN OFF SRITE SP

X EXPAND SPRITE SP

X UNEXPAND SPRITE SP

Y EXPAND SPRITE SP

Y UNEXPAND SPRITE SP
SP PRIORITY OVER SHAPES
SHAPE PRIORITY OVER SP
SET SPRITE TO COLOR C
PLACE SPRITE AT XY
MOVE SP FROM X1,Y1 TO
X2,Y2

HOOK UP ACTION SPRITES

COLLISION DETECTION
RESET COLLSION
REGISTER

SUSPEND GAME
RESTART GAME

CRASH SOUND ON
SOUND OFF

How To Use

MU=#: GOSUB 10
GOSUB 20

C=#: GOSUB 30

=#: Y=#: C=#:

GOSUB 40

X1=#: Yl=#: X2=#

Y2=#: C=#: GOSUB 50
X=#: Y=#: C=#:
GOSUB 62 or

PP=#: C=#: GOSUB 60
(SEE TOOL 90)

C=#: GOSUB 90

(SEE TOOL 800)

ND=#: NL=$: C=#:
MU=4#. SEE TOOL 800.
(SEE TOOL 90)

GOSUB 110

GOSUB 120

(SEE TOOLS 140,150,160)
XT=#: YT=#: GOSUB 140
XS=#: YS=#: GOSUB 150
RO=#: GOSUB 160
(DON'T USE WITHIN
PROGRAM)

Type RUN 172

SP=#: GOSUB
SP=#: GOSUB
SP=#: GOSUB
SP=#: GOSUB 21
SP=#: GOSUB
SP=#: GOSUB
SP=#: GOSUB
SP=#: GOSUB
SP=#: C=#: GOSUB 260

X=#: Y=#: SP=#: GOSUB 270
X1=#: Yl=#: X2=#:

Y2=#: SP=#: SD=#: GOSUB 280
KB=#: Pl=#: P2=#:

Ml=#: M2=#: Tl=#:

VE=#: GOSUB 290

GOSUB 300

2888

EEEE

GOSUB 310
GOSUB 320
GOSUB 330
GOSUB 340
GOSUB 350

360 COLLISION PUNISHMENT
800 RETRIEVE A SHAPE
810 RETRIEVE A SPRITE

SP=#: GOSUB 360
SE$=#: GOSUB 800
SE$=#: SP=#: GOSUB 810

Variable List
The following variables are commonly needed by this book’s subroutine tools:

Variable Description Value Range
MU Multicolor Indicator 0 = Hi-Res, 1 = Multicolor
C Color 0 To 15
X X Coordinate 0 To 319
Y Y Coordinate 0 To 199
X1 X Coordinate 0 To 319
Endpoint 1

Y1 Y Coordinate 0 To 199
Endpoint 1

X2 X Coordinate 0 To 319
Endpoint 2

Y2 Y Coordinate 0 To 199
Endpoint 2

PP Paint point coordinates’ 0 Based

position in P% array

XT Translate Along X —_—

YT Translate Along Y _

YS Scale Along X —_—

YS Scale Along Y —_—

RO Rotation Degrees _

SP Sprite Number 0 To 7

KB Keyboard Enable 0 = Joysticks, 1 = Keyboard

P1 Player 1 Enable 0 = Disable, 1 = Enable

P2 Player 2 Enable 0 = Disable, 1 = Enable

Ml Missile 1 Direction 0 = Disable, 1 = Up, 2 =
Down, 4 = Left, 8 = Right,
5=\, 6=/ 9=/,

. 10 =\

M2 Missile 2 Direction 0 = Disable, 1 = Up, 2 =
Down, 4 = Left, 8 = Right,
S=\,86=/,9-=/,,

10 = \.

T1 Target Direction 0 = Disable, 1 = Up, 2 =
Down, 4 = Left, 8 = Right,
5=\,6=v,9-=/

10 = \.
VE Game Speed 0 = Fastest, 85 = Slowest
SE$ Search String ——

COMMODORE 64

COLOR GRAPHICS:
AN ADVANCED GUIDE

By:
Shaffer & Shaffer Applied Research
& Development

S

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company
Reston, Virginia

ACKNOWLEDGEMENTS
Special thanks and appreciation are extended to Penelope Semrau

for developing the instructional concepts and graphic designs, to Jeffrey Young for
creating the Commodore 84 advanced color graphics tool kit, and to Tamara L.
Sullivan for writing the manuscript. This development team was supported by
Sandra Locke, who produced the artwork; and Andrew Whitman, who tested and
edited the manuscript. Thanks also goes to Kathy Planton for her contributions in
the typing of the manuscript. All of us hope you'll enjoy learning more about the
Commodore 64.

Daniel N. Shaffer

President,

Shaffer & Shaffer,

Applied Research &

Development, Inc.

General Editor
Robert P. Wells, Ph.D.

Graphics Production
Estela Montesinos
Steve Gunn

ISBN 0-8359-0787-2

Copyright 1984 © Arrays, Inc./The Book Division. All rights reserved. Printed in
the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior written
permission of Arrays, Inc.

Commodore 64 is a registered trademark of Commodore Business Machines. The
use of trademarks or other designations is for reference purposes only.

TABLE OF CONTENTS

INTRODUCTION 5
What You Should Know 5
How to Use This Book 6
What You Can Expect to Learn 7

CHAPTER 1: SETTING UP THE PROGRAM 11
The Joy of Machine Language 11
Entering the First Tools 22
Plotting Points and Lines 28
The Zap Routine 32
Summary 35

CHAPTER 2: WORKING WITH SHAPES 37
Defining Shapes 38
Entering Data Lists in the Program 42
Retrieving and Drawing Your Shapes 45
Multi-Color 54
Clip a Shape 61
Summary 69

CHAPTER 3: PAINTING SHAPES 73
Painting Simple Shapes 76
Painting in Multi-Color 83
Storing Paint Points : 87
Summary 98

CHAPTER 4: TRANSLATING SHAPES 103
Test Plotting Your Shapes 103
Duplicating Shapes 111
Painting While Translating 124
Summary 132

CHAPTER 5: SCALING SHAPES 139
Using the Cartesian Coordinate System 140
The Mathematics of Scaling 144
Anchoring Shapes for Orientation 151
Scaling Tips and Problems 163
Design Ideas 169
Summary 175

CHAPTER 6: ROTATING SHAPES 179
Simple Rotation Techniques 184
Overcoming Aspect Ratio Problems 191
Planning the Results of Rotation 194
The Mathematics of Rotation 199
More Design Ideas 203

Summary 207

CHAPTER 7: MAKING AND MOVING SPRITES
Introduction to Sprites
Special Features of Sprites
Drawing and Placing the Spacecraft Sprite
Animating the Spacecraft Sprite
Summary
Summary of Sprite Features

CHAPTER 8: ADVANCED SPRITE GRAPHICS
Introduction to the Interrupt System
Making and Moving Action Sprites
Collision Detection
Scoring and Special Effects
Summary

APPENDIX A: Additional Programs

APPENDIX B: Rotation Math

APPENDIX C: Bibliography

APPENDIX D: Machine Language Listing

APPENDIX E: Design Grids

APPENDIX F: Color Charts

APPENDIX G: Tool Kit Reference Card

211
211
217

242
245
246
251
251

266
274

287
290
293
294
306
309

INTRODUCTION

Welcome to the world of Commodore 64 advanced graphics—a dynamic world of
colors, imagination, intrigue, and, of course, fun. The fact that you purchased an
advanced book suggests that you are already familiar with computer art, or the
Commodore 64, or both. As we explain later in this section, some prior computer
experience will be necessary.

If you got this book to learn advanced programming techniques for color
graphics, you will appreciate the programs covered in these chapters. Program-
ming code that can rotate, scale, and translate (move) images on the screen has been
included for use in both simple and complex compositions. Also included are
instructions on creating multi-colored images, as well as advanced methods of
sprite manipulation. Carefully planned lessons will help you understand how and
when you should use each new-found skill. The result will be pictures for school,
work, entertainment—anything.

If your interest lies in learning more on the use of colors, tones, repetition,
patterns, and other artistic techniques, you won’t be disappointed. We’ve provided
you with useful tips, suggestions, and facts to help you effectively put your ideas on
the screen. This includes over 30 sketched designs illustrating how you can better
take advantage of each graphic concept introduced.

The idea of this book is to go one step beyond the technical aspects of computer
art. After answering the question “How can I rotate a figure?P”, it is just as impor-
tant to answer the question “What can I do with rotation?”’ Exactly what doors are
opened once the programs have been entered? That is what you will explore in the
coming chapters.

What You Should Know

In order to write an advanced book, we’ve made some assumptions about the
experience level of our readers. If you have already gone through our Commodore
64 Color Graphics: A Beginner’s Guide, you are ready for this book.

If not, the first requirement is that you have a good feel for the Commodore 64
keyboard and its collection of special keys. In this text, special keys are printed in
boldface to distinquish them from the rest of the text. So, for example, when you
read “Press the RETURN key,” you know to press the key marked RETURN on
your keyboard (do not type R-E-T-U-R-N).

Your programming skills do not have to be extensive, but should include a
first-hand knowledge of each item listed below (recommended reading is listed in
the right-hand column):

Commodore 64 User’s Guide

—variables (e.g., A, B§, T%) 95-103,112-113
—PRINT statement 23-29,123-124
—GOTO statement 32-34,120

—GOSUB/RETURN statements 120,124

Commodore 64 User’s Guide

—GET statement 47-48,119-120
—POKE statement 60-61
—IF/THEN statements 37-39,120-121
—REM statement 124
—computer memory 2-4,62-65,142
—arrays (computer lists) 95-103
—FOR/NEXT loops 39-40,43-45,119,121-122
—SAVE statement (saving programs) 21,116
—LOAD statement 18-20,115

Finally, you should have some experience with high resolution graphics. You
should know about foreground/background colors, screen color blocks, screen
memory versus color memory, and the X, Y coordinate system. If you need a review
of beginner’s graphics, try our Commodore 64 Color Graphics: A Beginner’s
Guide, or the Commodore 64 Programmer’s Reference Guide.

How to Use This Book

To use this book, you will need the following equipment:

—A Commodore 64 computer;

—A video monitor or TV screen (preferably color);

—A Commodore 64 disk drive with a properly formatted diskette, or a cassette
recorder for the Commodore 64 with a blank cassette tape; and

—Some graph paper to work out your own designs (optional).

Each time you sit down to use this book, you should be at your computer. All
equipment should be properly set up and turned on. Information on connecting
your computer and monitor is provided in the Commodore 64 User’s Guide. Disk
drive installation is covered in the manual(s) provided with the disk drive itself.
(This manual also covers formatting a diskette.) When the system is turned on, your
screen should display “**** COMMODORE 64 BASIC V2 *#*##> ¢ the top. Only
then will you be ready to begin a session with this book.

A “‘session” can be as long or a short as you like. That is the beauty of working
with programs. At the end of each session, simply save the current form of your
program. You can then turn the computer off and take a nap, watch TV, or visit
your friends. Later, you can easily return to your work by loading the program back
into memory, and then picking up in the chapter where you left off.

Each chapter ends at a logical breaking point. This makes it easy for you toread a
chapter, SAVE your program, take a break, and then continue later. For this reason,
we ask you to SAVE your program at the end of each chapter. When you begin
reading the next chapter, you are asked to LOAD the program back into memory.
As a general rule, it is a good idea to SAVE and LOAD your program whenever
instructed.

The general format of each chapter is as follows:

—New graphics and design concepts are introduced;

—New program lines are typed;

—The program is RUN and discussed in depth;

—Any additional design ideas and sketches are introduced where appropriate;
—All key technical and artistic points are summarized.

In the chapters, each programming technique is packaged as a useful subroutine
“tool” that can be inserted and used in any picture-drawing program you create. In
fact, by the end of Chapter 8 you will have a complete “tool kit”’ containing over 20
graphics subroutines. Need to draw a line? No problem. Just pick up the DRAW A
LINE tool, specify where you want the line drawn, and the job is done. (This will
become clear in Chapter 1.)

Another important aspect of this book is that it concentrates on teaching how
pictures can be drawn on the Commodore 64. Often, knowing why things work is
not essential to creating the picture.

Think of using your radio. You may not care why it works, just how it works
(where the switch is). Beginning in Chapter 1, any “why” that is not necessary to
understand has been placed in a box. These technical descriptions can be read or
passed over, as you please. Passing over a technical description will in no way keep
you from learning how to create your graphics displays.

Asafinal comment, practice what you learn before moving on from one chapter
to the next, and do not skip chapters. If you have difficulty with some of the
material, read through it again and re-try each example you are given. It will be
through repetition that your skills are retained and refined.

What You Can Expect to Learn

This book sets out to accomplish two things:
(1) Provide you with advanced programming techniques for color graphics; and

(2) Show you how and where these techniques can be applied to produce more
professional looking pieces of artwork.

To accomplish the first of these goals, you will learn how to:

—plot points and lines*
—store and retrieve shapes
—draw shapes

—paint shapes

—translate shapes
—rotate shapes

—scale shapes

If you already have experience making and moving sprites but want to learn
more about them, we also cover connecting sprites to joysticks, and sprite collision
detection. Sprites are small, arcade-like figures that can move around on your
screen. The ability to create moving designs is just one of the advantages computer
art has over sketchpads and canvases,

*Theseare beginning graphics concepts, and are not discussed in as much detail as the others.

To give you an idea of what some of this means, consider the two basic shapes
. sketched below.

By rotating the petal shape, you arrive at a flower:

By scaling the center piece, you change the appearance of the flower:

By scaling the petals instead, you achieve another form of the flower:

o

Finally, by translating all of the flower types, you arrive at a floral display:

To meet the second objective, teaching art concepts, we gave special considera-

tion to those art ideas that related specifically to our programs. Some of the topics
discussed include:

—patterns

—repetition

—tone or ‘“‘value” variation

—the illusion of depth

—the use of horizon lines

—variety through scaling

—using shapes to create other shapes
—the effect of shape placement/size.

For most people, drawing does not come naturally. Fortunately, there are most
specific guidelines, “tricks of the trade” if you will, that are easy to learn, under-

10

stand and apply. For example, you will see how a “‘horizon line” can significantly
add to the feeling of depth in a picture. You will learn about ““negative space,” and
why it is an important consideration in each of your designs. These and other
simple facts about design control are discussed and illustrated as you proceed
through the chapters.

Chapter One
SETTING UP THE PROGRAM

In order to work on advanced graphics, you have to start with some basic
graphics tools. As fundamental as ““plot a point”’ might be, there really can be no
advanced graphics without it. In this chapter, we will set you up with tools that can
do the following:

—*“turn on” graphics mode

—*“‘turn off”’ graphics mode

—clear the graphics screen and set the background color
—plot a point

—plot a line

—erase the main routine

There are several approaches to placing these tools in a program. We have taken
the approach of creating a subroutine for each. This saves you the trouble of
re-typing them every time you need one in your program. Instead, you set a few
variables and inserta GOSUB. By the end of this book you will have a whole range
of subroutine tools, ranging from the very simple to the very complex. The “main
routine” of your program will vary from picture to picture, but the subroutines will
remain the same.

We also chose to take advantage of machine language. If you’ve ever written
BASIC programs that draw pictures, you are no doubt aware of the time it can take
torun the finished program. This is because BASIC is not a language the computer
immediately understands. Instead, it must first “translate” each BASIC statement
into machinge language. Only then can it carry out the instructions it finds.

We felt that the time it takes to convert BASIC into machine language was too
long for an advanced book. So, in the next section, you will enter some machine
language as data statements to streamline and speed up a few of the slower tools.
The result will be dramatic.

You will find that the main thrust of this chapter is to set you up for advanced
graphics. This involves getting some beginning graphics programming and some
machine language typing out of the way.

The Joy of Machine Language

This section’s title expresses a mixture of both admiration and sarcasm. There’s
no doubt about it, nothing beats machine language for speed. Unfortunately, it is
not nearly as simple to learn or understand as it is fast. This section does not
attempt to explain any part of machine language to you. Instead, you will learn
what to type, why it will help you, and how to check it.

11

12

1 SETTING UP THE PROGRAM

You will perform three steps to enter the machine language data. The steps are:

(1) Enter a small program to help you type the machine language.

(2) Entering the machine language data.

(3) Enter a program that double-checks the machine language for accuracy.

Initially, this may seem like a lot of work. However, spending 45 minutes of
typing time now can save you hours of plotting time in the future. To instill
enough incentive to get you through the next few pages, we have provided the
picture below. You may need to flip back to it from time to time to keep yourself
going. This relatively simple picture took 28 minutes to plot using BASIC alone,
while taking only 41 seconds to plot using machine language.

The HELPER Program

Several hundred numbers need to be accurately POKEd into memory. This,i
needless to say, is quite a task. In addition, there will be many occasions when you
need to PEEK into memory to check your entries, more typing. |

To aid you in this process, we provide a HELPER program on page 13 that wil
do all of the repetitious typing for you. This will save you time and also reduce the
possibility of typing errors. In addition, the HELPER program produces a ‘‘check|
number”’ after every eight pieces of data are entered. By comparing this number to|
one in our text, you can check to make sure you are entering the data correctly.

SETTING UP THE PROGRAM 1

You will be told to SAVE this HELPER program after typing it. Be prepared
with a formatted diskette or blank tape on hand. When you are ready, read the list of
instructions below and then type the HELPER program on your Commodore.

—If you own a machine language monitor program that is easy to use and you
understand how it works, you may use it instead of the HELPER program. If
you don’t know what a machine language monitor program is, it probably
won't help you.

—Type slowly: accuracy is far more important than speed.

—Type in lower-case. This makes it easier to spot errors. To change to lower-
case, hold down a SHIFT key and press C=(located on the lower, left-hand side
of your keyboard).

—If you have trouble seeing your typing, press CTRL and 2 at the same time.
This changes your typing to white.

—If you have a habit of typing oh’s for zeroes, or small L’s for ones, you must
break that habit now. The computer expects numbers typed where numbers
are intended.

—Carefully check over your typing when you are done.
Begin typing:

2000 REM :::::: HELPER PROGRAM

2010 PRINT CHRS$(147) CHRS$(18) SPC(15) "HELPER"

202¢ A$="": INPUT "MEM/DATA"; A$: IF A$="" THEN END

2030 I=@: J=7: GOSUB 4@3f: REM GET ADDR -

204 ADDR=T: IF T<49152 OR T>5@05@4 THEN PRINT
"ERROR. TRY AGAIN.": GOTO 2020

2053 IF LEN(AS) = 28 THEN 3070: RFM POKER

2060 IF LEMN(AS$)>4 THEN PRINT "ERROR. TRY AGAIN.":GOTO 2020

2079 CK=0

2080 FOR I = @ TO 7

2099 PRINT " ";

3000 PR=PEEK(ADDR+I): CK=CK+P%

3010 PH® = P%/16: PL$ = P3-PH%*16

302¢ IF PH%>9 THEN PHR=PH%+7

303@ IF PL%>9 THEN PL$=PL3+7

3040 PRINT CHRS(PH2+48) CHRS(PL2+48);

3050 NEXT I:PRINT:PRINT"SUM FOR THIS ROW:" CK:PRINT

3060 GOTO 2020

3073 CK=0

3080 FOR J = 9 TO 7

3090 GOSUB 493@: CK=CK + T

4000 POKE AD+J,T

4010 NEXT J: PRINT"SUM FOR THIS ROW:" CK:PRINT

4020 GOTO 2020

4030 T=0

14

»

1 SETTING UP THE PROGRAM

4040 I=I+1

4050 IF I>LEN(AS$) AND J=7 THEN RETURN

4060 A=ASC(MIDS(AS,1))

4273 IF A=32 THEN RETURN

4083 A=A+48* (A<58)

4090 A=A+55*(A>64)

5000 IF A<@ OR A>15 THEN PRINT"ERROR. TRY
AGAIN." :GOTO 2020}

5010 T=T*16+A

5020 GOTO 4340

Carefully double-check your typing when you are done, and then SAVE this
program under the name “HELPER”. After saving any program, always use the
VERIFY command to make sure that the program did get saved. A summary of the
SAVE, VERIFY, LOAD, and LIST commands is given below.

To SAVE on disk, type: SAVE “‘filename”,8

To SAVE on tape, type: SAVE “filename’’,1

To VERIFY on disk, type: VERIFY “filename”,8

To VERIFY on tape, type: VERIFY “filename’,1

To LOAD from disk, type: LOAD “filename”,8

To LOAD from tape, type: LOAD “filename”,1

*To re-SAVE a program

on disk, type: SAVE “@O:filename”,8

to re-SAVE on tape: N/A. Save the revised pro-

gram at the end of the tape.

* The @0 command is one that allows you to erase and replace a program on diskette,
using the same filename. This command has a history of problems, and we therefore do not
recommend using it. An alternative is to re-name each modified or corrected program witha
filename similar to the original program (ie., "HELPER”, “HELPER.1”, “HELPER.2",
etc.).

To use the above commands now, be sure to replace “filename” with
“HELPER” (including quotes). When working with programs of your own,

filename can be replaced with any 16-character name you wish to assign to the
program.

If you are working with a cassette recorder, you will have to make use of your
COUNTER with every SAVE, VERIFY, and LOAD command. In addition, the
screen will present you with several messages as the commands are executed (e.g.,
PRESS PLAY AND RECORD). Follow the screen’s instructions at all times. If
nothing seems to be happening, try pressing C=. This keypress is necessary at
certain times in the LOAD and VERIFY commands.

With the HELPER program safely stored on disk/ tape, you can now try it out to
see just exactly how helpful it is.

