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Preface

The history of this publication starts in April 1992, when the second author gave
a talk at the Freie Universitat Berlin.

As one result of this lecture part of the audience felt the desire to study
some topological papers in more detail than before. A series of seminar talks
was given by the first author and the present text grew from the accompanying
notes.

The idea to turn those notes into a joint publication occured after the second
author obtained some new results that would nicely complement the already
gathered material. Work on this project was then begun separately in Moscow
and Berlin with interchanges by mail.

The actual writing of the text was done by the first author who has to
thank several people for their help. Sabine Koppelberg and Sakaé Fuchino read
previous versions and gave helpful comments, which led to simplifications in
some proofs. Many valuable remarks also came from Ingo Bandlow.

John Wilson improved the English and Ulrich Fuchs helped with TEX.

The final version was prepared jointly by both authors during March 1994 in
Berlin. We want to thank the Deutsche Forschungsgemeinschaft for its financial
support (Grant Number 436 RUS 17/192/93), which made the visit of the second

author possible.

After the main text was ready, Sakaé Fuchino kindly wrote an appendix
on set-theoretic methods in the field, which also includes some of his recent
independence results.

Berlin, September 21, 1994 L. H. L.B.S.
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Introduction

The first manifestation of interest in projective Boolean algebras seems to be the
paper [22] by Halmos. He established the (now) familiar properties of projective
objects in general and proved that all countable Boolean algebras are projective.
This is in sharp contrast to what happens for other classes of algebras, where
difficult questions arise already at the finite level.

The decisive tools for the study of projective Boolean algebras came from
topology. As projective Boolean algebras can be embedded into free algebras,
their dual spaces are dyadic. This class of spaces had been introduced by
P. S. Alexandorff and studied by topologists for many years. Most results about
them concerned cardinal functions in one form or the other. For a satisfactory
structure theory the class of dyadic spaces turned out to be too wide, however.
For the subclass of AE(0) spaces (its zero-dimensional members are exactly the
dual spaces of projective Boolean algebras) such a theory started with the re-
markable paper [23] by R. Haydon. He established that these spaces admit a
special kind of inverse limit representation. By means of this description Hay-
don showed that the class AE(0) coincides with the class of so-called Dugundji
spaces, which were earlier introduced by A. Pelczynski ([44]) via a functional
analytic property. The name ‘Dugundji space’ has later become popular and is
in the given context often used instead of AE(0).

Haydon’s inverse limits X = lim{X,;p%;a < # < A} have an ordinal as
index set and are continuous, i.e. for limit ordinals v < A the space X, is
homeomorphic to the limit of the restricted system {Xqa;p2;a < # < v}. Such
inverse systems are called ‘transfinite spectra’. The most important feature of
Haydon’s spectra is, however, the specific nature of the bonding maps po*!.

Transfinite spectra were probably first used by L. S. Pontryagin under the
name ‘Lie series’ in his analysis of the structure of compact groups. Before
Haydon’s paper transfinite spectra were used by S. Sirota to characterize the
Cantor cube of weight X;. As a consequence of his characterization Sirota proved
that the hyperspace (or exponential) of a dyadic space of weight at most X, is
dyadic again. This result, and the obvious question of what happens for bigger
weights, had an essential influence on the further development of the theory.

In the mid seventies, investigating uncountable products of metrizable spaces,
E. V. Séepin introduced the class of k-metrizable spaces. Using Haydon’s char-
acterization he proved the x-metrizability of all Dugundj spaces. This led him
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to a spectral characterization of compact k-metrizable spaces and to general
questions about inverse limit representations.

Generalizing the concrete work of his predecessors Séepin introduced the
concept of a class of compact spaces and a class of continuous mappings being
‘adequate’. Roughly speaking, spaces are classified according to whether they
admit inverse limit representations in which the bonding maps are taken from a
special class of mappings. This idea, in some sense, reduces the study of spaces
to the study of mappings.

The class of Dugundji spaces is adequate to what Séepin called 0-soft map-
pings. We shall be mainly concerned with the adequate pair that consists of
k-metrizable (otherwise known as open generated) spaces and open mappings.
It was studied mainly by Scepin, with important contributions coming from other
Moscow topologists, L. V. Sirokov and A. V. Ivanov to name just two. The lat-
ter established an important link between x-metrizable and Dugundji spaces: a
compact space is k-metrizable iff its superextension is a Dugundji space. In fact,
this theorem was an important step in the proof of the adequateness.

Another adequate pair, which will play a prominent role below, grew out of
the theory of absolutes and co-absoluteness, which dates back to I. V. Ponomarev
[45]. It turned out that the class of spaces co-absolute to Dugundji spaces is
adequate for the class of mappings co-absolute to 0-soft ones. The starting
point here was the second author’s result that every dyadic space is co-absolute
with (any compactification of) an at most countable sum of Cantor cubes of
suitable weights.

In this work we shall use the language of Boolean algebras to present most of
the results and concepts mentioned above. In other words, we confine ourselves
to the zero-dimensional case. Due to that special case, many proofs become
technically more transparent, which makes the ideas come out more clearly.
Admittedly, some of the ideas that are important for higher-dimensional spaces
get lost. Obviously, we do not touch the geometrical role of Dugundji spaces,
more precisely their subclasses AE(n). For information about these aspects the
interested reader may consult Dranisnikov’s paper [10].

To assure the topologist reader that he is not wasting his time, it should be
added that many interesting examples and counter-examples of the theory are
zero-dimensional anyway.

We have tried to collect all the results that have been obtained over the years,
mostly by Russian topologists. A word of caution is in place here. We often
attribute Boolean algebraic results to topologists. This is to be understood in the
wider sense. In most cases the corresponding topological result is more general
being true for spaces of arbitrary dimension. In some cases, the corresponding
topological result is only near in spirit to what we do.

The algebraic dual of an inverse limit decomposition of a space is the rep-
resentation of an algebra as the union of a system of subalgebras. The basic
idea of dealing with uncountable algebras by looking at suitable systems of well-
embedded subalgebras has, independently of topological considerations, been
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developed by model theorists (cf. [38]) and set-theoretically oriented algebraists
(cf. [11]).

One of the popular areas in this field is the study of almost free algebras in
various classes. This is in spirit similar to what we do in the text, but will play
no explicit role. The reader may consult [18] for further information and results
concerning these problems for the class of Boolean algebras.

Having returned to the algebraic setting we have to mention the name of
S. Koppelberg, who solved some of the problems from [22] and cultivated the
technique of decomposing Boolean algebras into chains of subalgebras. Her
survey [35] in the Handbook of Boolean Algebras made much of the material
about projectivity available to people working in algebra and set-theory. The
present work, which mainly deals with generalizations of projectivity, can be
regarded as a continuation in the same direction.

We now briefly introduce and motivate the main concepts that will play a role
in this work. We also try to summarize the contents in order to give the reader
an idea of what he can expect. Some of the statements in this introduction may
contain unexplained notions or be otherwise somewhat imprecise. Everything
really needed will be vigorously repeated in the main text.

Overview

Projective and rc-filtered Boolean algebras

Projectivity for Boolean algebras is defined as in all other varieties by a diagram
condition.

To be read:

A Boolean algebra B is projective iff for all homomorphisms B 5 AL C, with

1y surjective, there exists a homomorphism ¢ : B — C such that Y oe = ¢.
Putting A = B, ¢ = id and letting C be free, we get that each projective

Boolean algebra is a retract of a free Boolean algebra. It is easy to prove that

this property characterizes projectivity.

It would be desirable to have a characterization of projectivity that refers
only to the algebra itself. For other varieties of algebras such intrinsic charac-
terizations have been found. For example, in [14] R. Freese and J.B. Nation
characterize projective lattices by four conditions, one of which reads
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(%) for each b € B there are two finite sets U(b) C {c € B : b < ¢}
and L(b) C {c € B :c < b} such that, if a < b, then U(a)N L(b) # 0.

This condition makes sense for Boolean algebras, too, and for a while it was
believed to characterize projective Boolean algebras.! It turns out that this is
true for Boolean algebras of power at most X; (cf. 2.2.7) and that all projective
Boolean algebras have the property (cf. 2.2.6).

It is remarkable that the class of algebras satisfying (*) arises in a totally different
context. In [55] E.V. Séepin introduced the class of so-called openly generated?
compact spaces. These are spaces that can be represented as inverse limits of

inverse systems {X;, p}, I}, where

(1) the partially ordered index set I is o-complete, i.e. all countable chains
1) <1y <...<1, <...have suprema in I,

(2) the system is continuous, i.e. if j = sup J exists for some J C I, then X;
1s the inverse limit of the restricted system {Xj,p;, J},

(3) all X; are compact and metrizable, and
(4) all bonding maps p; : Xij — Xj are open.

To make the further explanations precise, we now give two definitions that
will be fundamental for the whole work.

A skeleton of a Boolean algebra B is a collection § of subalgebras of B that
is closed under unions of chains, i.e. |JK € & whenever K is a subchain (under
C) of §, and absorbing in the sense that for each X C B there exists some S € S
such that X C S and |S| < | X]| + Ro.

A subalgebra A of a Boolean algebra B will be called relatively complete (sym-
bolically A <,. B) if for each b € B there exists a least element of A above b.

Noticing that relatively complete embeddings are dual to open mappings
and that skeletons are (something like) duals of inverse systems, it should be no
surprise that the Stone space of a Boolean algebra is openly generated iff the
algebra itself has a skeleton consisting of relatively complete subalgebras. As an
abreviation we use the expression ‘rc-skeleton’ and call the algebras that have
such skeletons rc-filtered. It turns out that (cf. 2.2.3)

A Boolean algebra 1s rc-filtered iff it has the property (x).

1The first author wants to thank M. Ploséica for drawing his attention to this problem.
2 Also translated as open generated.
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Comparison of the two classes

Having the property (*), all projective Boolean algebras are rc-filtered. More-
over, the two classes coincide for Boolean algebras of cardinality at most R;.

There are several characterizations of both classes that demonstrate their
similarity. In this introduction we just give two such pairs of characterizations.
The diagram definition of projectivity can be modified in the following way (due
to Sirokov, cf. 2.4.3).

The Boolean algebra B 1s projective iff for all pairs of homomorphisms
B4 AL C, with i surjective, there exists a mapping e : B — C
preserving 0 and A such that Yoe = .

The diagram is the same as for projectivity, but £ need not be a homomorphism
any more. The counterpart for rc-filtered Boolean algebras reads (cf. 3.2.7):

The Boolean algebra B 1s rc-filtered iff for all pairs of homomorphisms

BA AL C, with ¢ surjective, there exists an order-preserving mapping
€ : B — C that also preserves disjoininess such that v oec = .

On the other hand, the property defining rc-filtered algebras, i.e. the existence
of an rc-skeleton, also has a counterpart for projective algebras. It is due to
Scepin and says ( cf. 1.3.2(4)):

The Boolean algebra B 1s projective iff it has a skeleton S such that for
each subset T C S the subalgebra generated by | JT is relatively complete
in B.

We only mention one further connection between projective and rc-filtered
Boolean algebras (due to A.V. Ivanov, cf. 3.2.6).
The Boolean algebra B is rc-filtered iff AB is projective,

where AB is a Boolean algebra constructed from B in a way explained in section
3.2. Its topological dual is the so-called superextension of the Stone space of B.

Starting from cardinality R, on, the two classes differ. Much of what follows
will be devoted to the construction of rc-filtered Boolean algebras that are not
projective. Most of them have additional properties which show that they are
non-projective ‘in a strong sense’. Let us list the most interesting of these. There
are rc-filtered Boolean algebras which are

(1) not embeddable into a free Boolean algebra (cf. 3.3.11),

(2) not projective but relatively complete subalgebras of free Boolean algebras
(cf. 3.4.7),

(3) not co-complete to a projective Boolean algebra (cf. 6.3.2).
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Moreover, Fuchino proved (unpublished, cf. 6.4.2) that

there are 282 pairwise non-isomorphic rc-filtered Boolean algebras of
power Nj.

Let us mention that among them there are only 2% projective Boolean algebras
(by a result of Koppelberg’s [35] not reproduced here).

The class of rc-filtered Boolean algebras

In chapter 2 the class of rc-filtered Boolean algebras is studied in a rather sys-
tematic way. Let us just mention two results about the behaviour of rc-filtered
Boolean algebras with respect to various operations (cf. 2.2.8 and 2.3.1).

Relatively complete subalgebras of rc-filtered Boolean algebras remain rc-

filtered.

If B can be written as the union of a well-ordered continuous chain
(Ba)a<a of rc-filtered subalgebras such that By <,. Bg for all o < j3,
then B 1s itself rc-filtered.

We also study cardinal functions on rc-filtered Boolean algebras and their sub-
algebras. It turns out that with respect to the most popular functions these
algebras behave like free ones. More precisely (cf. 2.7.10), if B s a subalgebra
of an rc-filtered Boolean algebra, then

7x =ind =7 =1Irr =t =s = x = hL = hd = Inc = h-cof = |B|

Vi
d

VI
Depth = Length = ¢ = Ro.

Co-completeness and weak projectivity

Two Boolean algebras will be called co-complete if they have isomorphic comple-
tions. Chapter 5 is devoted to the class of Boolean algebras that are co-complete
with projective Boolean algebras. In want of a better name, we call them weakly
projective. The main results are characterizations of weak projectivity. Two
highlights from that chapter are theorem 5.3.11 saying that

every subalgebra of a projective Boolean algebra is weakly projective

and theorem 5.2.2, which determines weakly projective Boolean algebras up to
co-completeness as the at most countable products of free Boolean algebras.

In the context of co-completeness the relevant type of embedding is called
regular. We write A <,., B iff sup*M = supB M for each M C A such that
sup® M exists (i.e. the identical mapping preserves all infinite suprema existing
in A).
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It is rather easy to prove that each Boolean algebra that is co-complete to
an rc-filtered one is ‘regularly filtered’, i.e. has a skeleton consisting of regular
subalgebras. Whether the converse is also true, remains an open problem.

Adequate pairs

At the beginning of the investigations in connection with his ‘spectral theorem’
Scepin defined the notion of a class X of compact spaces being adequate for a
class ® of continuous mappings. The following is a slightly modified Boolean
algebraic version of this concept.

Let B be a class of Boolean algebras and £ a class of embeddings. We write
A <g¢ B to express that A < B belongs to £. We call the classes B and £
adequate if the following conditions are satisfied.

(A1) Every algebra in B has a skeleton S such that S <g T for all S < T
belonging to S.

(A2) If (Ba)a<a 1s a well-ordered continuous chain of Boolean algebras belonging
to B such that B, <¢ Bp for all a < 3, then B = J, ., Ba belongs to B
and B, <¢ B, for all a < A.

The class of re-filtered Boolean algebras is adequate for the class of relatively
complete embeddings and the class of regularly filtered Boolean algebras turns
out to be adequate for the class of regular embeddings. In both cases condition
(Al) is taken as definition and (A2) proved from it. The same is true for the
third pair that we study in chapter 4. It is defined in terms of o-embeddings,
where A <, B if, for each b € B, the ideal {a € A : a < b} is countably
generated. The results parallel those for the other two pairs.

Let us mention here that there are also classes of embeddings which are
adequate for the class of projective and weakly projective Boolean algebras.
Appropriately, they are called projective and weakly projective embeddings. The
definitions are more complicated than in the above cases and can be found in
sections 1.5 and 5.3, respectively.

Functors

In chapter 3 we consider three constructions that are, in fact, covariant functors
of the category of Boolean algebras into itself: A, exp, and SP2. Their main
purpose is to prove Ivanov’s theorem and to construct the examples (1) and
(2) mentioned on page 5 above. The algebras in question are erpFrw; and
SP2?(Frw,), respectively, where Fr X denotes the free Boolean algebra on the
set X of generators.

The examples show that the class of projective algebras is not closed under
the functors exp and SP?. This observation naturally leads to more general
question of closedness under these functors. We concentrate on-ezp, where the
principal results are 3.3.10, 3.3.6, and 5.4.5:
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exp A 1s projective iff A is projective and |A| < V.
exp A 1is rc-filtered iff A 1s rc-filtered.
exp A 1s wea)cly projective iff A 1s weakly projective.

It should be mentioned here that in the topological setting there is a theory
of so-called normal functors and that (slight modifications of) the above and
other results below hold for these in general. Our restriction® to exponentials
has several reasons. First of all, exp is the typical normal functor. In that sense
we dont loose much. Moreover, the proofs are technically more transparent for
exponentials than in the general case. Finally, the very definition of a normal
functor becomes rather clumsy and unnatural if translated into the Boolean
algebraic language. The reader who wants to know more is referred to [55].

Set-theoretic appendix

The results in the main text are all obtained in ZFC by orthodox topological
and algebraic methods. The appendix written by Sakaé Fuchino demonstrates
another method to obtain results in ZFC. It uses elementary submodels of models
of set theory and was first applied to topological questions independently by
I. Bandlow and A. Dow.

Moreover, the appendix contains a number of recent independence results
mostly due to Fuchino himself concerning rc-filtered Boolean algebras which
answer some questions of Séepin from [55].

Prerequisites and notation

We present all definitions and results in the language of Boolean algebras and the
reader is supposed to have some experience with them. Our standard reference
will be the Handbook of Boolean algebras, in particular its first volume [34].
Whenever possible we quote results from there. This is rather unjust to the
original authors, but, hopefully, convenient for the reader.

Modulo the Handbook the text is more or less self-contained. Some ‘Digres-
sions’ contain results that shed additional light on what is in the main text.
Some of them are quoted without proof and qualified as ‘Informations’. None of
these results will be used in later proofs.

With very few exceptions we use standard notation, 1.e. that of the Handbook.

Let us dwell on some points that may differ from what the reader 1s used to.

Boolean operations

As a rule we consider Boolean algebras as complemented distributive lattices,
i.e. with the fundamental operations of intersection = meet, union = join, and

3But notice that SP? is also normal.
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complementation. We stick to the good old symbols A, V, and — (the latter is
officially unary; but a — b stands for a A —b).

If F = {ay,...a,} is a finite set of elements of the Boolean algebra A, we
alternatively write \/ F, ay V... Va, or \/[_, a; to denote its join. The a; are
then called ‘joinands’. If the set F' is infinite, we still write \/ F for its supremum
(if it exists). The elements of F will still be ‘joinands’. If several algebras are
considered at the same time, it makes sense to indicate in which algebra the
supremum is taken and we write VA F. Similarly for finite and infinite meets
and ‘meetands’.

Sometimes (and then we emphasize this) it will be convenient to consider Boolean
algebras as linear algebras (i.e. vector spaces with a multiplication) over the field
F; with two elements. That is why we use A,V and — to denote the lattice-
theoretic operations and + and - for the ring-theoretic ones. The connection is
well known:

a-b=aAb, a+b=(aVvb)—(andb), aVb=a+b+a-b, —a=1+a.

Subalgebras and embeddings

A < B means that A is a subalgebra of B. Formally, an embedding (sometimes
also called eztension) is a pair (A, B) such that A < B. We usually suppress the
parentheses and write, e.g., ‘let A < B be an embedding...”. The more general
concept of embedding hardly ever occurs in what follows and if it does, it will
be called an injective homomorphism.

For A < B and b € B we let A[ b denote the ideal {a€ A:a <b}of A. Ifbe A
then A[ b is a principal ideal, which can also be considered as a Boolean algebra,
the so-called factor algebra of A corresponding to b. It will be clear from the
context if we mean the factor algebra.

For a subset X C A of a Boolean algebra, (X), denotes the subalgebra of A
generated by X. Usually A will be clear from the context and we write (X)
only. If C is a subalgebra of A and X C A, we sometimes write C(X) instead
of (CUX). If X ={z,...,z,} is finite, this notation becomes C(z, ..., z,).

We shall often meet subalgebras of the form (BUC),, where B and C are
subalgebras of A. The elements of (B U C) have a particularly simple description,
namely V:-'z1 b; A ¢;, where b; € B and ¢; € C. This trivial fact often makes life
easier and will be tacitly used througout.

Free products

By A ® B we denote the free product of A and B. (cf. subsection 11.1 of [34],
where the notation A @ B is used). We find it more illuminating to denote its
canonical generators by a ® b (instead of the e4(a) A eg(b) of the Handbook).
So, each element of A ® B can be written in the form \/:':1 a; ® b; for some
ay,...a, € A and by,...b, € B. The characteristic property of free products is
expressed by the following fact.
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For each pair p : A — C and ¢ : B — C of homomorphisms there is a
unique homomorphism p ® Y : AQ B — C such that (¢ ® ¥)(a ® b) =

p(a) A p(b).

The free product of an infinite family will be written as @);¢; Ai.

Sikorski’s Extension Criterion

The following theorem (5.5 in [34]) will be used in several places and it seems
appropriate to formulate it once in all detail.

Theorem 0.0.1 Assume X generates the Boolean algebra A and ¢ maps X
into a Boolean algebra B. For ¢ to extend to a homomorphism A — B il is
necessary and sufficient that for all z,, ...z, € X and alle,, ..., e, € {+1,-1}
iferzi A Aepzn =0in A, then eyp(z)) A ... Aenp(zn) =0 in B.

Here +1z means £ and —1z is —z. In practice the given condition often splits
into three (collecting ‘positive and negative’ elements on different sides).

TIN... A2, =0 = p(z1))A...Ap(zs) =0,
rV...Vzp,=1 = p(z1)V...Veo(z,) =1,
and
oI N.. N2z <Zpmp1 V...V, —
()N .. Ap(zm) < p(Zme1) V...V o(z,).

Set theory

Our notation is standard. As usual, we consider cardinal numbers as special
ordinals. In particular, X, and w, denote the same object, considered under
different aspects. It will be convenient to use the notation |X| to denote the
maximum of Ry and the cardinality of X, i.e. |X| is always infinite.

Very little set theory is needed in the main text. In sections 2.10 and 6.4 we use
stationary sets and some of their basic properties. Everything we need to know
about these sets can be found in all modern standard texts. It is also contained
in J. D. Monk’s Appendix on set theory to volume 3 of the Handbook [34] (which
the reader is likely to use anyway). The same is true of the (easiest version) of the
A-Lemma, which occurs several times in the text. As with Sikorski’s Theorem
above, we feel obliged to once formulate it in full detail:

Theorem 0.0.2 If k is a regular uncountable cardinal and (Xqo)a<x 15 a family
of finite sets, then there exists a subset K C k and a finite set Y such that
|K| = &k and (Xa)aek s a A-system with kernel Y, 1.e. XoNXg =Y for all
distinct o, € K.

On one occasion we also need the analogous statement for families of more than
2% countable sets. An unorthodox proof of the general form is contained in
Fuchino’s appendix (cf. A.1.13).



