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Preface

The content of this monograph is situated in the intersection of important branches
of mathematics like the theory of one complex variable, algebraic geometry, low
dimensional topology and, from the point of view of the techniques used, combi-
natorial group theory. The main tool comes from the Uniformization Theorem for
Riemann surfaces, which relates the topology of Riemann surfaces and holomorphic
or antiholomorphic actions on them to the algebra of classical cocompact Fuchsian
groups or, more generally, non-euclidean crystallographic groups. Foundations of
this relationship were established by A. M. Macbeath in the early sixties and devel-
oped later by, among others, D. Singerman.

Another important result in Riemann surface theory is the connection between
Riemann surfaces and their symmetries with complex algebraic curves and their real
forms. Namely, there is a well known functorial bijective correspondence between
compact Riemann surfaces and smooth, irreducible complex projective curves. The
fact that a Riemann surface has a symmetry means, under this equivalence, that the
corresponding complex algebraic curve has a real form, that is, it is the complexifi-
cation of a real algebraic curve. Moreover, symmetries which are non-conjugate in
the full group of automorphisms of the Riemann surface, correspond to real forms
which are birationally non-isomorphic over the reals. Furthermore, the set of points
fixed by a symmetry is homeomorphic to a projective smooth model of the real form.

The monograph consists of an extensive Introduction, a compilation of basic
results in the Preliminaries, four principal Chapters and a short Appendix on asym-
metric Riemann surfaces. After the Preliminaries, in Chap. 2, we focus our attention
on the quantitative results concerning upper bounds for the number of conjugacy
classes of symmetries. We divide our study into three cases, according to the na-
ture of the set of points fixed by the symmetries. Namely we distinguish whether
this set is empty or not and, accordingly, consider just symmetries with fixed points,
just symmetries without fixed points and finally hybrid configurations allowing both
types of symmetries simultaneously.

Chapter 3 can be seen as a variation on the classical Harnack theorem, that
states that the set of points fixed by a symmetry of a Riemann surface of genus
g has at most ¢ + 1 connected components, all of them being closed Jordan
curves, called ovals in Hilbert’s terminology introduced in the nineteenth century.
We first deal with the problem of finding the total number of ovals of a specified
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number of non-conjugate symmetries. We next consider the same problem for all
the symmetries (conjugate or not) of a Riemann surface. We finally deal with the
total number of ovals of a pair of symmetries in terms of the order of its product and
the genus of the surface.

The monograph is actually devoted to the symmetries of Riemann surfaces of
genus at least two since they are the ones uniformized by the hyperbolic plane. The
theory of symmetries of the remaining surfaces, that is, the Riemann sphere and the
tori, is well-known for a long time but, for the sake of completeness and the reader’s
convenience, we devote the main part of Chap. 4 to this subject. We also outline the
classification of the symmetry types of hyperelliptic Riemann surfaces as being the
double covers of the Riemann sphere.

Finally, Chap. 5 is dedicated to the symmetries of Riemann surfaces with large
groups of automorphisms. Such surfaces are important since on the one hand they
are determined by a 2-generator presentation of their groups of automorphisms, and
on the other hand they can be defined over the algebraic numbers due to the cele-
brated theorem of Belyi from the late seventies. Furthermore, by a recent result of
B. Kock and D. Singerman, these algebraic numbers can be chosen to be reals if
the surface is symmetric. The foundations for the study of symmetries of such sur-
faces were established by Singerman, who found necessary and sufficient algebraic
conditions in terms of the mentioned above generating pair for such a surface to
be symmetric. In the first section, apart from Singerman’s proof, we give formulae
to compute the number of ovals of these symmetries, to which we refer as Singer-
man symmetries. Using these formulae we deal, in the next two sections, with the
significant families of Macbeath-Singerman and Accola-Maclachlan and Kulkarni
surfaces. Finally we describe the symmetries of the last two families by means of
algebraic formulae.
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Introduction

By a symmetry o of a compact Riemann surface S we mean an antianalytic
involution ¢ : S — S. A Riemann surface which admits a symmetry is called sym-
metric. Under the well known functorial bijective correspondence between compact
Riemann surfaces and smooth, irreducible, complex projective curves, symmet-
ric surfaces correspond to curves definable over the field R of real numbers. If
o : S — S is a symmetry then the pair (S, o) is usually called a real algebraic
curve, see the foundational monograph [4] by Alling and Greenleaf to justify this
definition. Some topological features of the real curve (S, o) can be obtained from
its associated symmetry o. For instance, the set of real points of the curve is home-
omorphic to the fixed point set Fix(o) of the symmetry. In addition, symmetries
which are non-conjugate within the full group Aut(S) of automorphisms of S cor-
respond to real curves which are non-isomorphic over the real numbers but are
isomorphic over the complex numbers.

With a language closer to the one we will use here, let us show an example of two
non-birationally R-isomorphic real algebraic curves whose complexifications are
birationally C-isomorphic. Let us consider for ¢t = 0, 1, the degree 3 homogeneous
polynomial

Fi(z,y,2) = y%z — z(z? + (-1)t2?).

An easy computation shows that at any point in the complex projective plane P?(C),
the partial derivatives of F}; are not simultaneously zero. So, for t = 0, 1, each set

Sy ={[z:y:2] € PXC): Fy(z,y,z) =0}

admits a structure of compact Riemann surface. In fact, Sy and S; are birationally
C-isomorphic as complex algebraic curves via the isomorphism

0:8 — S1; [r:y:z]— [fx: €y €32,

where ¢ = e'™/4. However, their sets of R-rational points, that is, the real curves
So(R) and S;(R), are not birationally R-isomorphic. Indeed, both are smooth but
So(R) is connected while S;(R) has two connected components. The paper [32] by
Cirre and Gamboa presents many other examples of non-isomorphic real algebraic
curves with isomorphic complexifications.

Xi



Xii Introduction

These phenomena lead naturally to the following problems we deal with in this
monograph:

(1) Is a complex smooth algebraic curve C definable over the reals?

(2) Assume that this question has an affirmative answer. How many non-
birationally R- isomorphic real algebraic curves admit C as its complexification?
The projective smooth models of such real curves are usually called the real
forms of C.

(3) What can be said about the topology of the real forms of C?

The expository work by Gromadzki [51] can be understood as the first attempt to
survey the known answers to these questions. Because of the methods to be used, it
seems convenient to translate these questions into a more suitable language. To that
end we use the terminology introduced at the beginning. In particular, the first of the
above problems reads off: is a compact Riemann surface symmetric?

Let o and 7 be symmetries of the compact Riemann surface S. The pairs (.5, o)
and (S, 7) are real forms of S; they are said to be isomorphic if there exists an
automorphism ¢ of S such that ¢ = ¢ o 7 0 ¢~ 1. In this way the second problem
to be treated is the counting of the number of conjugacy classes of symmetries
with respect to the group Aut(S) of analytic and antianalytic automorphisms of
the Riemann surface S.

Finally, the topological type of a symmetry o of S is determined, together with
the genus of S, by the number of connected components, or ovals (in the nineteenth
century Hilbert’s terminology) of the fixed point set Fix(¢) = {p € S : o(p) = p}
and the connectedness character of its complement S\ Fix(c) in S. More precisely,
the triple (g, k,¢€) is said to be the topological type of a symmetry o of a genus
g surface S if the set Fix(o) has k connected components,and e = 1 ore = 0
according to whether S\ Fix(c) is connected or not. We say that o is non-separating
if ¢ = 1 and separating otherwise.

A classical result due to Harnack [59] and Weichold [127] states that the nec-
essary and sufficient conditions for a triple to be admissible, that is, to be the
topological type of some symmetry o, are the following:

1<k<g+1 ife=0 withg+1=k (mod 2);
0<k<g if e=1.

The pair (k, €) is usually codified by the symbol +k ife = 0and —k ife = 1. It
is called the species of the symmetry o and denoted by sp(c).

It has to be mentioned that the orbit space X, = S/(o) of the compact Riemann
surface S under the symmetry o is usually called a compact Klein surface. The
fixed point set Fix(o) is homeomorphic to the topological boundary of X,. Both
are in fact homeomorphic to the set of real points of the projective smooth irre-
ducible real algebraic curve associated to the symmetry o. If this set is empty then
we say that the corresponding real curve (S, o) is purely imaginary. These pairs cor-
respond to complex algebraic curves which can be defined over the reals but have
no R-rational points. It is well known that the set S \ Fix(o) is either connected or
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it has two connected components. In the first case, i.e., if o is non-separating, then
the orbit space X, = S/(o) is non-orientable, while in the separating case X, is
orientable.

An expository account of the functorial correspondence between real algebraic
curves and Klein surfaces can be found in [45], see also the condensed versions
[103, 104] by Natanzon.

As we shall see throughout this monograph, a fundamental component to ap-
proach the problems mentioned above is the knowledge of the full automorphism
group Aut(.S) of the analytic and antianalytic automorphisms of S and its subgroup
Aut™(S) consisting of the analytic ones. Moreover, to determine the topology of
a given symmetry o of S, the centralizer C(Aut(S),o) of o in Aut(S) plays a
fundamental role. Although automorphism groups do not constitute the core of this
work, we will need them very frequently. It is worth mentioning that the factor group
C(Aut(S),0)/(c) is isomorphic to the group of automorphisms of the Klein sur-
face S/(co). There is a vast literature concerning groups of automorphisms of such
surfaces. Among them we should mention [22], [58], [79]-{90], [93], the pioneering
papers [114] and [40] and the exceptionally complete work [105].

We now describe briefly the content of this monograph. We also quote the con-
tributions of different authors to the development of the employed techniques and
related topics.

Although in Chap. 4 we study the symmetries of the sphere and the tori, we
will mainly be concerned with compact Riemann surfaces of genus bigger than one.
By the Uniformization Theorem, such a surface S can be presented as the orbit
space of the hyperbolic plane H{ under the action of a surface Fuchsian group I'.
Moreover, using covering theory, it can be proved that each automorphism group
of S = H/T is a factor group A/I', where A is a non-euclidean crystallographic
(NEC in short) group containing I' as a normal subgroup. The key point now is
that the algebraic structure of both Fuchsian and NEC groups is well known and
this is why we devote Sect. 1.1 to the presentation of some basic facts about these
groups.

The above shows that in order to move ahead with the combinatorial approach
of the study of symmetries of Riemann surfaces it is essential to understand the
relation between the presentations of two NEC groups I' and A, where the first is a
normal subgroup of the second one. This task is mainly due to E. Bujalance, who
developed in a series of papers [ 10-12] at the beginning of the eighties, an efficient
method to solve this problem based on surgery of fundamental regions. It is also
worth mentioning the article by J. A. Bujalance [27] concerning this problem. These
results appear, without proofs, in Sect. 1.2.

One of the main elements in the combinatorial approach to the study of symme-
tries of compact Riemann surfaces is the analysis of the centralizers of hyperbolic
reflections in NEC groups. Singerman found in his Ph. D. Thesis [115], see also
[119], the isomorphism type of centralizers of reflections in NEC groups. Going a
bit more into the details of Singerman’s proof, explicit generators of these groups
can be obtained, see the papers [48, 51] by G. Gromadzki. We present them in
Sect. 1.3.
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Section 1.4 concerns uniformization of compact Riemann and Klein surfaces by
means of Fuchsian and NEC groups, respectively, and its consequences. We pay
special attention to the explanation of the notions of maximal Fuchsian or NEC
groups and maximal signatures, and the relation between them. Although we have
not included proper proofs of the results we will be using throughout the monograph,
for which the reader is referred to [22, Chap. 5], we present carefully the main
concepts.

To finish this preliminary chapter, we explain the basics about symmetries in
Sect. 1.5. We recall the notions of topological type and species of a symmetry
and the classical Harnack-Weichold necessary and sufficient conditions for a given
triple to be the topological type of some symmetry. We also approach the prob-
lem of deciding whether a Riemann surface is symmetric. This depends, in general,
on its analytic type. However, there is an exception, pointed out by Singerman,
who showed in [118] that if the group Aut™(S) of analytic automorphisms of S
is large enough then the symmetrical character of S depends only on the group
Aut™(S). Moreover, Singerman obtained a necessary and sufficient condition for
the surface S to be symmetric and here we provide a slightly different proof of his
criterion.

Surfaces S with large analytic automorphism group Aut™ (S) are rather special
and, perhaps, the most interesting ones. In particular they are Belyi surfaces since
Autt(S) can be uniformized by a triangle Fuchsian group. This implies, by Belyi’s
Theorem, see [7], that S can be defined by polynomial equations whose coefficients
are algebraic numbers. Furthermore, by the recent results of Kock and Singerman
[66] and Kock and Lau [67] on symmetric Riemann surfaces with large group of
automorphisms, these algebraic numbers can be chosen to be real.

Chapter 2 is devoted to quantitative aspects of the theory; we deal with the
problem of finding the number of conjugacy classes of symmetries of Riemann sur-
faces. The study of symmetries that fix points comes back to the seminal work of
Natanzon [95] who proved, using deep topological methods, that a Riemann sur-
face of genus g has at most 2(,/g + 1) non-conjugate symmetries that fix points.
Moreover, he showed that this upper bound is attained for each value g of the form
g = (2"~ —1)2. Later on, Bujalance, Gromadzki and Singerman proved in [24]
that these are the only values of g for which Natanzon’s bound is sharp. Moreover, if
the bound is attained then all the symmetries are non-separating. In the same article
the authors found an upper bound for the number of conjugacy classes of separating
symmetries of a surface of genus g.

At a first sight this bound seems to be a strictly increasing function of the
genus, but later on it was discovered that this is so only up to some extent. Indeed,
Gromadzki and Izquierdo proved in [53] that a Riemann surface of even genus has
at most four non-conjugate symmetries that fix points. This result was extended to
surfaces of odd genus by Bujalance, Gromadzki and Izquierdo in [23]. In that paper,
and for each odd genus, the authors found sharp upper bounds for the number of
such symmetries. We reprove these results in Sect. 2.2 of this chapter.

The search of an upper bound for the number of conjugacy classes of fixed point
free symmetries is much more involved. In Sect. 2.3 we provide an upper bound



Introduction XV

valid for those surfaces which have no symmetry with fixed points. The bound,
which depends only on the 2-adic part of g — 1, was obtained originally in [18] and
it was shown to be attained for infinitely many values of g.

Finally, in Sect. 2.4 we obtain an upper bound for the number of conjugacy
classes of symmetries of a genus g surface allowing both fixed point free symmetries
and symmetries with ovals. Once more it turns out that this bound depends only on
the 2-adic part of g — 1.

Chapter 3 deals with several enumerations of ovals of the symmetries of a
Riemann surface. Section 3.1 is crucial for the rest of the monograph; its main result
allows us to find the number of ovals of a symmetry of a Riemann surface S from the
algebraic structure of the full automorphism group Aut(S) and from the topologi-
cal type of the action of Aut(.S) on S. It was originally established in [49]. As we
mentioned, a Riemann surface of even genus has at most four non-conjugate sym-
metries and, as an application of the result just quoted, Gromadzki and Izquierdo
found in [54] the maximal total number of ovals of such extremal configuration of
symmetries.

The problem of finding the maximal number of ovals of a fixed number & of non-
conjugate symmetries of a Riemann surface of genus g has been investigated by
many authors throughout the years. However, it has been solved in its full generality
just recently [56]. The first results, concerning low values of k, were obtained by
Natanzon in [96, 100, 105], where he showed that an upper bound for such number
is 2g + 2%~ for k = 2, 3, 4 and characterized the pairs (g, k) for which this bound
is attained.

Later on, Singerman in [121] showed that for each non-negative integer k there
exist infinitely many values of g for which there exists a Riemann surface of genus
g admitting k non-conjugate symmetries having 2g — 2 + 2=3(9 — k) ovals in total.
In his work, Singerman also conjectured that this is in fact the best possible upper
bound. This was shown by Gromadzki in [50] to be false for kK > 9 by showing
that, for £ > 9, the maximal possible number of ovals is 2g — 2 + 2T‘3(9 — k),
where 7 is the smallest positive integer for which k < 27=1 Moreover, this bound
is attained, for arbitrary £ > 9, for infinitely many values of g. Later on Natanzon
proved in [107] that Singerman’s conjecture is true under the additional assumption
that the symmetries are separating. The presentation of these results is the main goal
of Section 3.2.

It is worth mentioning that Singerman’s conjecture was found to be true for k = 9
in [50] and it was conjectured to be also true for k in range 5 < k < 8. This has
recently been answered in the affirmative by Gromadzki and Koztowska-Walania
in [56].

Section 3.3 concerns the total number of ovals of all symmetries of a Riemann
surface. Recall that a simple closed curve on a Riemann surface S is said to be an
oval of S if it is an oval of some symmetry of S. Let ||.S|| be the number of ovals of
S and let v(g) be the maximum of ||S|| where S runs over all Riemann surfaces of
genus g. Using topological methods, Natanzon proved in [105] that v(g) <42(g—1),
and Gromadzki improved this bound in [49] by using combinatorial methods. We
present the complete proofs of these results in this section.
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Finally, Sect. 3.4 is devoted to the study of pairs of symmetries of Riemann
surfaces. A lot of work has been done in this topic, and we include in this section
some of the most relevant results. Once more the first and fundamental steps in this
kind of questions are due to Natanzon, who classified topologically in [102] pairs of
commuting symmetries.

Natanzon in [105] and later on Bujalance, Costa and Singerman in [21], found
an upper bound for the total number of ovals of two symmetries in terms of the
genus of the surface and the order of their product. A finer bound, which involves
the number of points fixed by the product of these symmetries, has been obtained
by Gromadzki and Koztowska-Walania in [55].

On the other hand, it was proved in [21] that two symmetries o; and o2 of a
genus g Riemann surface S having k; and k3 ovals, where k1 + k2 > g + 3, always
commute. In a recently published paper by Koztowska-Walania [69], this bound has
been proved to be optimal to guarantee the commutativity of each pair of symmetries
of S, with one exception in each genus g > 2.

Another interesting result concerning pairs of symmetries was obtained by
Bujalance and Costa, who calculated in [19] upper bounds for the degree of hyper-
ellipticity of the product of two commuting symmetries. These upper bounds vary
according to the separating character of the symmetries and they depend just on the
numbers of their ovals. A nice improvement has been published by Koztowska-
Walania in [68], where the upper bounds for the degree of hyperellipticity are
substituted by its precise values.

Izquierdo and Singerman showed in [63] that the existence of a symmetry whose
number of ovals is extremal, that is, either 0 or g + 1 where g is the genus of the
surface, imposes restrictions on the number of ovals of any other symmetry of the
same surface. They also found extra restrictions if the separating character of the
symmetries is considered. Later on, Costa and Izquierdo [34] showed that for every
admissible triple (g, k, ) there exists a genus g surface admitting symmetries o
and 7 with topological types (g, k,€) and (g, 1, 1), respectively. This result has a
deep consequence: the locus of symmetric Riemann surfaces of fixed genus g > 2
is a connected subspace of the moduli space M, of Riemann surfaces of genus g.
Of course this result is not new, but what is new is its proof. Klein conjectured it and
Seppild provided a modern and complete proofin [111] by using strong deformation
of curves.

The study of the number of connected components of distinguished subspaces of
My is arecurrent theme in algebraic geometry. In fact the connectedness of the most
important subspaces is rather exceptional, as it was shown, for example, by Buser,
Seppild and Silhol in [28]. In this article the authors study the subset of the moduli
space of stable curves of genus bigger than one consisting of curves admitting a
given finite group as a group of analytic automorphisms. They prove that this subset
is always compact, is not connected in general, and it is connected for the group of
order 2. In the same vein, it is worth mentioning that in the already quoted paper
[34], Costa and Izquierdo proved the disconnectedness of the subspace of p-gonal
Riemann surfaces of genus g for fixed values of p and g. This extends an earlier
theorem by Gross and Harris [59] only valid for p = 3.



Introduction Xvii

The class of p-gonal surfaces has attracted the interest of many authors. In what
concerns symmetries, we quote here the result of Costa and Izquierdo in [35] where
they study the symmetries of cyclic p-gonal Riemann surfaces by means of Fuchsian
and NEC groups. To finish, it is worth mentioning the paper by Bujalance, Costa and
Gromadzki [20], where the behaviour of symmetries with maximal number of ovals
under non-ramified coverings is studied.

Chapter 4 is devoted to the presentation of classical selected examples. To begin
with, we study the Riemann sphere ¥ in Sect. 4.1. It is elementary to show that the
maps oy : 2 — Zand 0y : z — —1/Z are symmetries of ¥ and that they are the only
ones, up to analytic conjugation. Section 4.2 is devoted to classify the symmetries
of the tori, for which we follow closely the approach by Alling [3]. Each torus is
presented as the orbit space C/L for a suitably arranged lattice £. The symmetrical
character of the torus and the topological type of its symmetries are expressed in
terms of the lattice £. As it is classical, the analysis requires the cases of square or
hexagonal lattices to be treated separately.

In Section 4.3 we explain how the complete classification of the symmetries of
hyperelliptic Riemann surfaces was obtained by the authors of this monograph in
their previous work [14]. This work is too extensive even to be completely summa-
rized here, but we explain an example in detail, showing how both the combinatorial
approach and the use of algebraic equations, combined with a topological method,
are fruitful in this case.

In Chap. 5 we deal with symmetries of surfaces S whose group of analytic au-
tomorphisms Aut™ (S) is large enough. Following [52], we call these symmetries
Singerman symmetries. As mentioned above, the symmetrical character of such sur-
faces depends only on Aut™(S). In Sect. 5.1 we give formulae for the number of
ovals of the symmetries of such surfaces in terms of the orders of the isotropy groups
of some automorphisms acting on Aut™(S), and the orders of some distinguished
elements in Aut*(S). These results constitute a fundamental component in the de-
velopment of the next sections of this chapter.

The understanding of the symmetries of the so called Macbeath-Singerman sur-
faces is the goal of Sect. 5.2. These are genus g surfaces admitting the projective
special linear group PSL(2, g), where ¢ is a prime power, as its group of analytic
automorphisms of the maximal order 84(g — 1). Klein [65] was the first to discover
the existence of such surfaces, as he showed that the group of analytic automor-
phisms of the genus 3 surface

S={[z:y:2] € PXC):x3y+y32 + 2%z = 0},

known as the Klein quartic, is the projective special group PSL(2, 7) of order 168.
Macbeath [72] proved much later the existence of a unique Riemann surface of
genus 7 on which the group PSL(2, 8) of order 504 acts as its full group of analytic
automorphisms.

Following ideas of Singerman from [118], we show that all Macbeath-Singerman
surfaces are symmetric. We also determine the number of symmetries they admit,
which we call Macbeath-Singerman symmetries, and the topological type of each
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of them. Remarkably, all of them are non-separating. These results were proved
for the first time by Broughton, Bujalance, Costa, Gamboa and Gromadzki in [8].
The proof we present here is quite different and relies heavily on the results of the
previous section of this chapter.

In the 1960’s, Accola [1] and Maclachlan [77] proved, independently, that for
every integer g > 2 there is a compact Riemann surface X, of genus g whose
automorphism group has order 8¢ + 8. It is called the Accola-Maclachlan surface
and it is defined by the polynomial equation y? = 292 —1. The result is interesting
as 8g + 8 is the largest order of an automorphism group that can be attained for
every genus g. Much later, Kulkarni [70] considered the question of uniqueness of
the surfaces attaining this bound. It turns out that the Accola-Maclachlan surface X,
is the unique one if g = 0,1,2 (mod 4) and g sufficiently large. However, for large
enough g = 3 (mod 4), Kulkarni also proved that, in addition to X, there exists
exactly one other surface, called Kulkarni surface, of genus g whose automorphism
group also has order 8¢g + 8.

In Sect. 5.3 we show that these surfaces are symmetric and, moreover, we deter-
mine the number of conjugacy classes of symmetries they admit and the topological
type of each of them. As in the example of Sect. 5.2, the proof proposed here re-
lies on the results in Sect. 5.1 and it is quite different from the original one which
appeared in [9].

It must be pointed out that the examples selected to this chapter are in some
sense exceptional because it has been possible to decide successfully the separating
character of each symmetry. But, of course, they are not the only ones. In their
paper [2], Akbas and Singerman not only calculated the number of ovals of the
symmetries of the modular surfaces Xo(N) = H/T'o(NN), but also showed that they
are separating for N = 2, 3, 5, 7, 13 and non-separating for all other primes N.
The situation is slightly worse for the symmetries of the modular surfaces X (N) =
H/T(N). All of them are non-separating in case N = 3(mod 4) is prime but, as
far as we know, there is no general answer for primes N = 1 (mod 4).

Another interesting example, that we do not explain in the monograph, is due to
Tyszkowska [126], who obtained sharp upper bounds for the number of ovals of the
symmetries of the Belyi surfaces admitting PSL(2, p) as its group of automorphisms.

Section 5.4 is devoted to finding polynomial equations of the sets of points fixed
by the symmetries of families of Riemann surfaces studied in the precedent ones.
The key point is the Galois theory of finite coverings, as explained to the authors by
P. Turbek. In fact Turbek is responsible for the original finding of equations of the
symmetries of the Accola-Maclachlan surfaces occurring in [9], but in this mono-
graph we have chosen a more geometrical approach. However, the presentation of
the part of this section concerning defining equations of the sets of points fixed by
the symmetries of the Kulkarni surfaces follows closely Turbek’s article [124].

It is convenient to explain a little bit the method employed. We begin with a plane
model of our Riemann surface S, possibly with singularities, defined as the zero set
in C2 of a polynomial P € C[X,Y]. A symmetry o of S can be seen as an involution
of the quotient field Ep of the coordinate ring C[X,Y]/(P) of S. We look for a
different polynomial @ € R[X, Y] which also defines S. Then the quotient fields
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Ep and Eg are isomorphic via a birational isomorphism, say ¢ : Ep — Eq. With
respect to these new coordinates, the symmetry o’ = ¢ =1 0 0 0 ¢ acts as complex
conjugation:

di)=-i; odX)=X; dY)=Y,

where i = y/—1. Observe that the fixed points of ¢’ are the real solutions of the
equation Q(X,Y) = 0.

We finish this work about symmetries with a few words about asymmetric sur-
faces, that is, surfaces admitting no symmetry. Such surfaces have recently played
an important role in the study of deformations and moduli of complex surfaces, as
in the paper [29] by Catanese, where the author finds a counterexample to a conjec-
ture of Friedman and Morgan relating diffeomorphisms and deformations of such
complex surfaces.

Let M, be the moduli space of complex isomorphism classes of complex alge-
braic curves of genus g > 2. Since M, is a quasiprojective variety defined in some
projective space P"(C) by means of polynomials with real (in fact rational) coeffi-
cients, complex conjugation induces an anticonformal involution o5 : Mg — M.
Let Mg} be the complex moduli space of real algebraic curves of genus g, which con-
sists of complex isomorphism classes of complex algebraic curves that are defined
by real polynomials. It is clear that the set Fix(oy) of points fixed by o} contains
Mg‘ but, as observed by Clifford Earle in [40], the inclusion M? C Fix(oy) is
proper. The asymmetric curves are precisely those whose isomorphism classes oc-
cur in the difference Fix(oy) \M[g. Seppild showed in [110] that every asymmetric
curve is in fact a covering of a real algebraic curve.

It is classical that for any integer g > 2 there exists a compact Riemann surface
of genus g whose group of analytic automorphisms is trivial. Indeed, Greenberg
proved in [47] that outside a proper analytic subset of the Teichmiiller space, all
compact Riemann surfaces of genus g > 3 have the identity as its only analytic
automorphism. However, it is not easy to construct examples of such surfaces. It
is worth mentioning the paper by Mednykh [91] who constructed, for each pair of
integers (p, ), where p > 3 is prime and » > 2p, a fundamental region of a Fuchsian
group which uniformizes a compact Riemann surface of genus g = (p—1)(r—1)/2
with trivial automorphism group.

Later on, Everitt in [42] found new examples for all ¢ > 2, using Schreier
coset graphs for subgroups of triangle groups. Combining covering theory with
Galois theory of algebraic function fields in one variable, Turbek [123, 125] pro-
vided defining equations of compact Riemann surfaces with trivial group of analytic
automorphisms.

In the same vein, Earle in [40] was the first to find examples of pseudo-real
Riemann surfaces, that is, surfaces without symmetries but with orientation revers-
ing automorphisms. Later on, Bujalance and Turbek constructed in [26] algebraic
equations of the elements of an infinite family of pseudo-real Riemann surfaces. The
construction we present in Chap. 6 is a particular case of the one in [26].

More recently, Bujalance, Conder and Costa in [17] have shown that there exist
pseudo-real Riemann surfaces of genus g for each g > 2 and, furthermore, that the
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maximum number of automorphisms of such a surface is 12(g — 1). This bound
turns out to be sharp for infinitely many values of g.

Another instance of pseudo-real surfaces occurs in [13], where Riemann surfaces
of even genus g with an orientation reversing automorphism of order 2g are studied.
These surfaces constitute a family of real dimension three and “most” (but not all)
of them are asymmetric. In fact, a defining algebraic equation depending on three
real parameters can be given for each such surface and it turns out that those which
are symmetric depend just on two parameters.



Contents

1 Preliminaries ...............cooiiiiiiiiiiii 1
1.1 NEC Groups and Their SIgNAtUTES oo ¢ s sessmes s v vammsies s smasins s swanses 1
1.2 Norinal Subgroups of NEC GIOUpS . ... . sssesisss o s ssswns s swswnies s 5 nassss 6
1.3 Centralizers of Reflections...q:: s saswnss s sswnsns s vawnass s saswans s s sawnna 8
1.4  Uniformization and Automorphism Groups of Riemann
and KIS SUTTATES o « - sunons ¢ ¢ agummssine s sasmearaiens o s wirorsvess 8 swasisiaisisis » & sasaiorss 11
14,1 Maximal NEC Groups . sssses:s s s o svumss 2 3 sxmmmes s swssums s o ¢ woomss 13
1:4.2 TeichmUllerSPACES o : s anwunss s vasenis & s sswsises s swewes » § wuwenss 14
1.5 Symmetric Riemann Surfaces .............ccoeiiiiiiiiiiiiiiiiiiiiin, 15
1.5.1 Algebraic Conditions ...........cccoiiiiiiiiiiiiiiiiiiiiieeeeaannn. 18
2 On the Number of Conjugacy Classes of Symmetries
of Riemann Surfaces . .co:q.  sacmuns s samsena s s snanins s somamins § samnisie s sassns s 21
2.1 Conjugacy Classes of Involutions in 2-Groups ................ccooeeennn 21
2.2 Symmetries with Non-Empty Set of Fixed Points....................... 23
2.3 Symmetries with Empty Set of Fixed Points ........................... 29
2.4 Symmetries of Surfaces Admitting a Fixed Point Free Symmetry ..... 31
3 Counting Ovals of Symmetries of Riemann Surfaces...................... 33
3.1 Enumeration of Ovals of Symmetries at Large .......................... 33
3.2 Total Number of Ovals of Non-Conjugate Symmetries ................. 34
3.3 Total Number of Ovals of all Symmetries of a Riemann Surface....... 41
3.4 Total Number of Ovals of a Couple of Symmetries ..................... 55
4 Symmetry Types of Some Families of Riemann Surfaces ................. 65
4.1 Symmetry Type of the Riemann Sphere ...................ocooiiien. 65
4.2 Symmetry Types of TOr .......ccoooiiiiiiiiiiiiiiiiiiii e, 68
4.2.1 Symmetric TOTT «.ovvvini e 73
4.3 Symmetry Types of Hyperelliptic Riemann Surfaces ................... 82
4.3.1 A Geometric Method : . : sewssiss s smessiss s s qromss s soesmes s ssmases s 85
4.32 An Example: comemns s comsmun e o conmens ¢ s snems s s o s savemes s 87



