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Preface

A European Mathematical Summer School entitled “ASYMPTOTIC COM-
BINATORICS WITH APPLICATIONS TO MATHEMATICAL PHYSICS”
was held at St. Petersburg, Russia, 9-22 July 2001. This meeting was at the
same time a NATO Advanced Studies Institute.

It was cosponsored by NATO Science Committee, European Mathematical
Society, and Russian Fund for Basic Research.

This volume contains mathematical lectures from the school. Another part
of the materials presented at the School, more related to mathematical physics,
is already published!. Information about the School, its participants, program,
etc. can be found at the end of this volume.

The present volume contains lecture courses, as well as several separate
lectures, which have mainly mathematical rather than physical orientation.
They are aimed mostly at non-specialists and beginners who constituted the
majority of the participants of the School. I would like to emphasize that
splitting the lectures into “physical” and “mathematical” ones is relative.
Moreover, the idea of the School was to unite mathematicians and physicists
working essentially on the same problems but following different traditions
and notations accepted by their communities.

The last few years were marked by an impressive unification of a num-
ber of areas in mathematical physics and mathematics. The Summer School
presented some of these major — and until recently mutually unrelated — top-
ics: matrix problems (the study of which was initiated by physicists about
25 years ago), asymptotic representation theory of classical groups (which
arose in mathematics approximately at the same time), the theory of random
matrices (also initiated by physicists but intensively studied by mathemati-
cians), and, finally, the theory of integrable nonlinear problems in mathemat-
ical physics with a wide range of related problems. As a result of the new

! Proceedings of NATO ASI Asymptotic Combinatorics with Application to Mathe-
matical Physics, V. Malyshev and A. Vershik, Eds., Kluwer Academic Publishers,
2002, 328pp.
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interrelations dicovered, all these young theories, which constitute the essen-
tial part of modern mathematics and mathematical physics, have become part
of one large mathematical area. These interconnections are mainly combina-
torial. An illustration of this phenomenon is the perception of the fact that
the asymptotic theory of Young tableaux and the theory of spectra of random
matrices is essentially the same theory, since the asymptotic microstructure
of a random Young diagram with respect to the Plancherel measure coincides
with the microstructure of the spectrum of a random matrix in the Gaus-
sian ensemble. The corresponding asymptotic distributions are new for the
probability theory. They were originally found by Riemann-Hilbert problem
techniques (the Riemann-Hilbert problem arises in calculation of the diagonal
asymptotics of orthogonal polynomials). In the present volume this direction
is represented by the lectures by P. Deift and A. Borodin. Later these dis-
tributions were obtained by another method, that calculates the correlation
functions directly using direct relations to integrable problems and hierarchies
(A. Borodin, A. Okounkov, G. Olshansky).

The lectures by A. Vershik, G. Olshansky, R. Hora, and partially by
A. Borodin and P. Biane are devoted to the asymptotic representation theory.
This theory studies the asymptotic behavior of characters of classical groups
as the rank of the group grows to infinity. It was started in the beginning
of 1970s by works of Vershik—Kerov and Logan-Shepp and one of the first
results was the proof of the asymptotic behaviour of the characters of sym-
metric group and Young diagrams. At that time the similarity and relations
to quantum chromodynamics and matrix problems were anticipated but not
yet clearly understood. Now these relations are well understood; they have be-
come precise statements rather than vague analogies. These relations are also
considered in the lectures by E. Bresin and V. Kasakov which have appeared
in the other volume of the School proceedings.

From this point of view, four lectures by A. Okounkov take a particular
position. They contain a sketch of the complete proof (obtained jointly with
R. Pandharipande) of the Witten-Kontsevich formula relating the generating
function of important combinatorial numbers of algebraic geometrical origin
and the 7-function of the KdV equation hierarchy. In these lectures, special at-
tention is paid to the role of the theory of symmetric functions and asymptotic
representation theory, as well as to relations to random matrices.

The lectures by R. Speicher, M. Nazarov, and by M. Bozejko and R. Szwarc
are devoted to more special topics which, however, fit in the same context.
Although there are at present hundreds of journal papers on all these subjects,
however the time for accomplished presentations is yet to come. The published
lectures of the School should stimulate this process. The reader should keep in
mind that the references cited in the lectures are not exhaustive. Of course, the
relations between asymptotic combinatorics and mathematical physics extend
farther than the topics touched upon during the School. For example, closely
related combinatorial problems play a key role in conformal field theory which
is now developing fast. I hope that the lectures presented in this volume will be
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useful for beginners as well as for specialists who want to familiarize themselves
with this fascinating area of modern mathematics and mathematical physics
and start working in it.

Two prominent mathematicians, Anatoly Izergin (1948-1999) and Sergey
Kerov (1946-2000), died a year before the conference which had been planned
with their active participation. Their contribution to areas of mathematical
physics and mathematics related to the topics of the conference was enormous.
One of the sessions of the conference was devoted to their memory.

All the work on preparation of this manuscript was carried out by
Yu. Yakubovich, to whom I am very grateful. I would like to express my
gratitude to the following organizations which helped greatly in the organi-
zation of the School: the European Mathematical Society, the NATO Science
Committee, the Euler International Mathematical Institute, the St. Peters-
burg Department of the Mathematical Institute of the Russian Academy of
Sciences and the St. Petersburg Mathematical Society.

Anatoly M. Vershik
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Asymptotic representation theory and
Riemann—Hilbert problem

Alexei Borodin

School of Mathematics
Institute for Advanced Study
Einstein Drive

Princeton NJ 08540

U.S.A.
borodine@math.upenn.edu

Summary. We show how the Riemann-Hilbert problem can be used to compute
correlation kernels for determinantal point processes arising in different models of
asymptotic combinatorics and representation theory. The Whittaker kernel and the
discrete Bessel kernel are computed as examples.

Introduction

A (discrete or continuous) random point process is called determinantal if its
correlation functions have the form

Pn(Z1,. .., Tn) = det[K (z:, 7)1 521,

where K(z,y) is a function in two variables called the correlation kernel.
A major source of such point processes is Random Matrix Theory. All the
“unitary” or “f# = 2” ensembles of random matrices lead to determinantal
point processes which describe the eigenvalues of these matrices.

Determinantal point processes also arise naturally in problems of asymp-
totic combinatorics and asymptotic representation theory, see [6]-[9], [5], [15],
[21]. Usually, it is not very hard to see that the process that we are interested
in is determinantal. A harder problem is to compute the correlation kernel of
this process explicitly. The goal of this paper is to give an informal introduc-
tion to a new method of obtaining explicit formulas for correlation kernels.
It should be emphasized that in representation theoretic models which we
consider the kernels cannot be expressed through orthogonal polynomials, as
it often happens in random matrix models. That is why we had to invent
something different.

The heart of the method is the Riemann—Hilbert problem (RHP, for short).
This is a classical problem which consists of factorizing a matrix—valued func-
tion on a contour in the complex plane into a product of a function which
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is holomorphic inside the contour and a function which is holomorphic out-
side the contour. It turns out that the problem of computing the correlation
kernels can be reduced to solving a RHP of a rather special form. The input
of the RHP (the function to be factorized) is always rather simple and can
be read off the representation theoretic quantities such as dimensions of irre-
ducible representations of the corresponding groups. We also employ a discrete
analog of RHP described in [2].

The special form of our concrete RHPs allows us to reduce them to certain
linear ordinary differential equations (this is the key step), which have classical
special functions as their solutions. This immediately leads to explicit formulas
for the needed correlation kernels.

The approach also happens to be very effective for the derivation of (non-
linear ordinary differential) Painlevé equations describing the “gap probabili-
ties” in both random matrix and representation theoretic models, see [4], [3].
However, this issue will not be addressed in this paper.

The paper is organized as follows. In Section 1 we explain what a de-
terminantal point process is and give a couple of examples. In Section 2 we
argue that in many models correlation kernels give rise to what is called “in-
tegrable integral operators”. In Section 3 we relate integrable operators to
RHP. In Section 4 we derive the Whittaker kernel arising in a problem of
harmonic analysis on the infinite symmetric group. In Section 5 we derive the
discrete Bessel kernel associated with the poissonized Plancherel measures on
symmetric groups.

This paper is an expanded text of lectures the author gave at the NATO
Advanced Study Institute “Asymptotic combinatorics with applications to
mathematical physics” in July 2001 in St. Petersburg. It is a great pleasure
to thank the organizers for the invitation and for the warm hospitality. The
author would also like to thank Grigori Olshanski and Percy Deift for helpful
discussions.

This research was partially conducted during the period the author served
as a Clay Mathematics Institute Long-Term Prize Fellow. This work was also
partially supported by the NSF grant DMS-9729992.

1 Determinantal point processes

Definition 1. Let X be a discrete space. A probability measure on 2% is called
a determinantal point process if there exists a function K : X x X — C such
that

Prob{A € 2% |A D {z1,...,2,}} = det[K(zi, 7;)]7,—,
for any finite subset {z1,....zn} of X. The function K is called the correlation
kernel. The functions

pn ¢ {n-point subsets of X} — [0,1]
pn:{z1,..., 2z} — Prob{A| A D {z1,...,zn}}
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are called the correlation functions.

Ezample 1. Consider a kernel L : X x X — C such that

o det[L(z;,z;)]F;-; > 0 for all k-point subsets {y1,...,yx} of X.
e [ defines a trace class operator in £2(X), for example,
>z yex |L(z,y)| < oo or L is finite rank. In particular, this condition is
empty if |¥| < oco.
Set
1

et = AT D

This defines a probability measure on 2* concentrated on finite subsets. More-
over, this defines a determinantal point process. The correlation kernel K (z, y)
is equal to the matrix of the operator K = L(1 4 L)~! acting on ¢2(X). See
(10], [5], Appendix for details.

Prob {{y1,. .. -det[L(yi,yj)]:-‘,j=l .

Definition 2. Let X be a finite or infinite interval inside R (e.g., R itself).
A probability measure on locally finite subsets of X is called a determinantal
point process if there exists a function K : X x X — C such that

Prob{A € 2f;, 4, | A intersects [z;,z;+Az;] for alli=1,...,n}
Axy,..., Az, —0 A:L‘l e A.’En

= det[K(zi,:tj)]:‘,j=1

for any finite subset {z1,...,z,} of X. The function K is called the correlation
kernel and the left-hand side of the equality above is called the nth correlation
function.

Ezample 2. Let w(z) be a positive function on ¥ such that all the moments
[ x"w(z)dz are finite. Pick a number N € N and define a probability measure
on N-point subsets of X by the formula

Pn(dzq,...,dzN) =cN H (:ci—zj)2 H w(zg)dzk.

1<i<j<N 1<k<N

Here ¢y > 0 is a normalizing constant. This is a determinantal point pro-
cess. The correlation kernel is equal to the Nth Christoffel-Darboux kernel

Kn(z,y) associated with w(z), multiplied by y/w(z)w(y). That is, let
po=1, pm (I)’ p?(x)v cee

be monic (= leading coefficient 1) orthogonal polynomials on X with the
weight function w(z):

pm(z) = 2™ + lower order terms ,

/ P (Z)pn(2)w(z)dz = hppbmn, m,n=0,1,2,....
x
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Then the correlation kernel is equal to

X pr(@)pe ()
Kn(z,y) = 3 2o 55 V@)
k=0

_ L ov@pvaa@) —pva@en ) s

hn_-1 T—y

The construction of this example also makes sense in the discrete setting. See
(12], (18], [19], [15] for details.

Remark 1. The correlation kernel of a determinantal point process is not
defined uniquely! In particular, transformations of the form K(z,y) —

%K (z,y) do not change the correlation functions.

2 Correlation kernels as integrable operators

Observe that the kernel Kn(z,y) of Example 2 has the form

o(z)p(y) — Y ()9(y)

KN(:E,y): T—vy

for appropriate ¢ and 1. Most kernels appearing in “S = 2 ensembles” of
Random Matrix Theory have this form, because they are either kernels of
Christoffel-Darboux type as in Example 2 above, or scaling limits of such
kernels. However, it is an experimental fact that integral operators with such
kernels appear in many different areas of mathematics, see [11].

Definition 3. An integral operator with kernel of the form

f1(z)91(y) + fa(x)g2(y)
T—y

(1)

is called integrable. Here we assume that fi(x)gi(z) + fo(z)g2(z) = 0 so that
there is no singularity on the diagonal. Diagonal values of the kernel are then
defined by continuity.

The class of integrable operators was singled out in the work of Its, Izergin,
Korepin, and Slavnov on quantum inverse scattering method in 1990 [14].

We will also call an operator acting in the €%-space on a discrete space
integrable if its matriz has the form (1). It is not obvious how to define the
diagonal entries of a discrete integrable operator in general. However, in all
concrete situations we are aware of, this question has a natural answer.

Ezample 3 (poissonized Plancherel measure, cf. [5]). Consider the probability
measure on the set of all Young diagrams given by the formula
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dim A\ ?
IAY )

Prob{)\} = e~%9!A ( (2)
Here 6 > 0 is a parameter, dim A is the number of standard Young tableaux
of shape A or the dimension of the irreducible representation of the symmetric
group S| corresponding to A. Denote by (p1,...,pdlq1, ..., q4) the Frobenius
coordinates of A (see [17], §1 for the definition of Frobenius coordinates). Here
d is the number of diagonal boxes in . Set Z' =Z + § = {+1,+3,...}.

Let us associate to any Young diagram A = (p|q) a point configuration
Fr(\) C Z’ as follows:

H(A):{pl+%a"'>pd+%7_ql_%7"'7—(1 _%}

It turns out that together with (2) this defines a determinantal point pro-
cess on Z'. Indeed, the well-known hook formula for dim A easily implies

e d 2
Pita;
02

Prob{A\} =e~? | d
rob{A} = e | det | G — D v )

— e_e det[L(y‘n y])]‘l.2§=l

ij=1

where {y1,...,y24} = Fr()\), and L(z,y) is a Z' x Z' matrix defined by

0, if zy > 0,
z|+|y

L(z,y) = 6 1
(l| = Wyl - 3 = -y’

In the block form corresponding to the splitting Z' = Z/, UZ’_ it looks as
follows

if zy < 0.

E=Y
2 1
@-Dicy-Diz-y
0

0
L(Iay) = 0%1! 1

(cz-Diy-Plz—v

The kernel L(z,y) belongs to the class of integrable kernels. Indeed, if we set

i x>0 O’ T > 01
fi(z) =g2(y) = { (= — ) " fa(x) = a1(y) = 0%
—_—, <0,
0, <0, (-z — %)|
then it is immediately verified that L(z,y) = (fi(z)g1(y)+ f2(z)g2(y))/(z—v).
Comparing the formulas with Example 1, we also conclude that e = det(1 +
L).!
! Since 3

z,y€’
well-defined.

|L(z,y)| < oo, the operator L is trace class, and det(1 + L) is
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What we see in this example is that L is an integrable kernel. We also know,
see Example 1, that the correlation kernel K is given by K = L(1 + L)~ 1. Is
this kernel also integrable? The answer is positive; the general claim in the
continuous case was proved in [14], the discrete case was worked out in [2].

Furthermore, it turns out that in many situations there is an algorithm
of computing the correlation kernel K if L is an integrable kernel which is
“simple enough”. The algorithm is based on a classical problem of complex
analysis called the Riemann-Hilbert problem (RHP, for short).

Let us point out that our algorithm is not applicable to deriving corre-
lation kernels in the “8 = 2” model of Random Matrix Theory. Indeed, the
Christoffel-Darboux kernels have norm 1, since they are just projection op-
erators. Thus, it is impossible to define the kernel L = K (1 — K)~!, because
(1 — K) is not invertible. In this sense, RMT deals with “degenerate” deter-
minantal point processes.

On the other hand, the orthogonal polynomial method of computing the
correlation kernels, which has been so successful in RMT, cannot be applied
directly to the representation theoretic models like Example 2.2 above (see,
however, [15]). The algorithm explained below may be viewed as a substitute
for this method.

3 Riemann—Hilbert problem

Let X be an oriented contour in C. We agree that (+)-side is on the left of the
contour, and (—)-side is on the right of the contour. Let v be a 2 x 2-matrix
valued function on X

Definition 4. We say that a matriz function m : C\ ¥ — Mat(2,C) solves
the RHP (X,v) if
(1) m is analytic in C\ X;

2 =m_ X, wh = li :
(2) my =m_v on X, where my(x) - fm:nm(i)_”dem(g)

We say that m solves the normalized RHP (X, v) if, in addition, we have

(3 m(c) = 1= ]] a5 ¢ oo

Next we explain what is a discrete Riemann—Hilbert problem (DRHP, for

short). ]
Let X be a locally finite subset of C, and let w be a 2 X 2-matrix valued

function on X.

Definition 5. We say that a matriz function m : C\ X — Mat(2,C) solves
the DRHP (X,w) if

(1) m is analytic in C\ X,

(2) m has simple poles at the points of X, and

Res¢=, m(¢) =<l£rgc(m(()w(x)) for any z € X.
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We say that m solves the normalized DRHP (X, w) if

(3) m(¢) — I = [(1)‘1)} a8 & =00

If the set X is infinite, the last relation should hold when the distance from
¢ to X is bounded away from zero.

Our next step is to explain how to reduce, for an integrable operator L,
the computation of the operator K = L(1+ L)~! to a (discrete or continuous)
RHP.

3.1 Continuous picture [14]

Let L be an integrable operator on L?(X, |d(|), X' C C, with the kernel (z,y €
L)
fi(z)g1(y) + fa(x)g2(y)

L(z,y) = ey ; fi(z)gi(z) + fa(x)g2(z) = 0.

Assume that (1 + L) is invertible.
Theorem 1. There exists a unique solution of the normalized RHP (X, v)

with f f
~ [fi _ [1+2mifigi 2mifige
v=1+2mi [f2] [91 92] = [ 2mifagy 14 2mifaga|’

Forx € X set
F1 (.’L‘) s fl (.’12)
=1
[Fz(z)} g ) [fz(l‘) !
Gl(x)] Lt |91()
=1 .
[Gz(m) =il © 92(z)
Then the kernel of the operator K = L(1 + L)™' has the form (z,y € X)
_ Fi(2)G1(y) + Fa(2)Ga(y)
r—y
Ezample 4. Let X be a simple closed curve in C oriented clockwise (so that
the (+)-side is outside X'), and let L be an integrable operator such that the

functions fi, f2, 91,92 can be extended to analytic functions inside Y. Then
the solution of the normalized RHP (X, v) has the form

K(z,y) and Fi(z)Gi(z) + F2(z)Ga(z) = 0.

01

I —2m [fl
f2

Then we immediately obtain F; = f;, Gi = ¢;,i =1,2;and K = L(1+L)"! =
L. On the other hand, this is obvious because [y, L(x,y)L(y,2)dy = 0 by
Cauchy’s theorem which means that L2 = 0.

[1 0] outside X,
m =

[gl 92] inside X.




