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PREFACE

During the past decade digital signal processing has emerged as a
major discipline in electrical engineering. This development has been
the result of the marked progress in computer technology. As computers
become more accessible, users find new applications and generate new de-
mands for even more sophisticated technology. These events have had a
profound impact on the growth of digital signal processing into a distinct
subject in the university curriculum.

This book has grown out of our teaching and research experience in
the field of digital signal processing. We have written the book in the
form of a standard mathematics textbook in the following sense. The book
is self-contained and all concepts are defined in mathematical terms as
they are introduced. The chapters are divided into articles, and approxi-
mately ten problems are given at the end of each article. These problems
deal with the subject matter of the article, and the successful working of
these problems indicates a mastery of the material in the article. The
answers to all the problems are given at the end of the book so the student
can check his results himself. Altogether there are over 500 problems, and
this collection makes up what we consider to be the most important part of
the book.

This book is written primarily for use in electrical engineering de-
partments. It is designed as a text for a senior or first-year graduate
level course. It is assumed that the reader has a background in advanced
calculus. Because the first chapter is a review of complex variable theory,
many instructors will choose to omit Chapter I. When we teach the course,
we usually assign selected problems from this chapter during the first week.
In this way we can spot any students that might need extra help, and we can
direct those students to selected portions of the chapter. Much of Chap-
ter ITI is numerical analysis, so the material is already quite familiar to
students at the senior and graduate level. As a result, the speed with
which material is covered is always at the discretion of the instructor.

The inclusion of such introductory material is a special feature of this
book. It eases the student into digital signal processing without too much
of a jolt by appealing to his knowledge of standard mathematical areas as
complex variable theory and numerical analysis.

Another special feature of the book is its introductory inclusion of
time series analysis. The rapid engineering expansion of computers and di-
gital processing has made possible much more complete analyses of time se-
ries data. Signal processing algorithms and their implementation go hand
in hand with the study of time series data generated by physical, economic,
or biological processes.

This book can be used as a supplementary text in a course in time se-
ries analysis as given in mathematics, statistics, and economics departments.
The mathematical approach of the book and the inclusion of the introductory
material and the problems make the book accessible to students without prior
knowledge of electrical engineering. In this way, the book provides an op-
portunity for a cross-fertilization of ideas between the digital signal pro-
cessing methods of electrical engineering and time-series methods.



We have found the book especially helpful in teaching industrial
courses. All companies today realize the importance of keeping their
people abreast of the latest scientific developments. The special fea-
tures of this book represent a valuable asset in the training of people
who have been away from college studies for several years.

Thus, the present book is written for people interested in obtaining
a working knowledge of the combined fields of digital signal processing
and time series analysis. The emphasis is on the development of an under-
standing of the concepts involved and an appreciation of the problems
faced in applications. The material is presented with sufficient depth
to provide the reader with the background necessary to understand the de-
tails of the methods. These methods are now being applied to such diverse
areas as acoustics, biomedical engineering, data communication and tele-
phony, economics and business analysis, geophysics, picture and image en-
hancement, nuclear science, oceanography, sonar, and speech communication
and recognition.

In summary, this book presents in a mathematical way the main body
of knowledge of digital signal processing. It is aimed at the engineering
student to ease his entrance into this field, to the time-series student
so he can incorporate these methods into his area of research, and to the
practicing engineer or scientist to facilitate his job of staying abreast
new developments in his field.

We want to express our sincere thanks to Professor George B. Thomas
of the Massachusetts Institute of Technology for many valuable insights
in the writing of this book. We want to thank Mrs. Gardiner W. White for
her excellent work in the typing of the manuscript.

Enders A. Robinson
Manuel T. Silvia

ii




|

PREFACE

1.

2,

4,

CONTENTS

N TR LIl T T I |

COMPLEX VARIABLES AND PHASORS:.:ccsetocevescsssssaasannasssscssncsonss 1

The real and complex number SYSteM....eeeeeseoeeessssssoosessss 1
The compleX Plane....cecesseosscsscsescessrsnscsassssssoscnesons 7
The vector representation of complex numbers..........ccocceeee 13
PhaSOT S eoeeveeeescsesssasscsssssssonccsssasasssssssssossssssass 17
Applications: The amplitude and Phase pattern of an array..... 21
Taylor SerieS..ceceececesssesccescasassancososasssscscansecnncs 30
LAUTENt SETi@S..veeeveereeeerassssssscsscsssssasasscssnnsescess 40

DIGITAL SIGNALS AND SYSTEMS...... PP PP

Finite differences. ..eeeeeeeresncescasossscscscssssasonasassass 49
Difference equUationS..veieeeeecectscecsoecsossoccsnarsnscccnens 58
Digital SignalsS..eceeecaennsecuctacctosascssnsaassssocscnnsanes 66
Classification of digital SYStemMS......eeeeeessasnnsossssescass 81
Impulse response and convolution.......cceieeernecccrcccccnns 89

THE TRANSFER FUNCTION......... R PP

Causal filters and Taylor SerieS....c.eeeeceeenccssscscenssnses 99
Noncausal filters and Laurent SerieS.....ceoeseeeseesascassssseal2l
The Laplace z-transform and the engineering z-transform........124
Properties of the Laplace Z—£ransfOrMe ceeeeeeeansosecssaneanassl3l
The inverse Laplace Z=tTanSfOTM. covsvevencaasosnasnsnsasssensss bbb
Invertibility and minimum-delay....ceeesseessecensnasssssssaesal53
Recursive (ARMA) systems.......................................163

THE FOURIER TRANSFORM OF DIGITAL SIGNALS.....eeeeeenananssescsccncessl70

Frequency domain representation of digital signals and systéms.170
Fourier transform of discrete-time signals.......ceeeeeescesss.183
Specialization of the Fourier transform to the case of

real sequences.................................................197
Minimum-delay and minimum—phase—lag............................201
All-pass systems...............................................210
The finite Fourier transSfOrM...c.ceeesescsccsscsssnaassacssssesll?
The fast Fourier transform, an algorithm for the

computation of the finite Fourier ETansSfOrMe e eeeeeessesnonoeess224
Development of the fast Fourier transforM. .ceeeeecssroosesoesess229

iii



10.

CONTENTS (Cont.)

THE RELATIONSHIP BETWEEN ANALOG AND DIGITAL SYSTEMS...u..eeveesnnenn.

5.1 Mathematical description of the uniform-rate sampling

PrOCESS . et saneansnsosoososcsssssesssssssasonasesesecossosssss
5.2 The sampling theOTem. s v eeeeeeeeeneneneeeesensosoeonnonennnns
DESIGN OF DIGITAL FILTERS..:eeeeesecene. PR RS E SR E e e s e einie s e aie e
6.1 Design of moving average (MA) filterS...eeeseseeeeseesoecennes
6.2 Design of recursive (ARMA) filterS..ceeeeoeeceeeceeonosesnnsns
6.3 Least-squares design of moving average (MA) filters ...........
THE KEPSTRUM. ¢t oo vt eeneeteeeenaoonosoeenceennnenseenossenesaanonss
7.1 Even-odd and real-imaginary relationships for causal systems..
7.2 Relationship between gain and phase-lag...... o Siete i nm e e e N
7.3 The KepPStLTUM. ¢ oo sisssvasssssisssssnsssosssssossetessnnnnssss
7.4 Removal of an eChO..veeveennreeeennnnses W 5 90 6 6 e R
RANDOM PROCESSES .. tcteveneoonoocsceceeonnnsoesonns siissvssesrornanee
8.1 Stationary random processSeS.........e.... Cesrececenacscnnnsaas
8.2 Signal enhancement and prediction........veeeeeeeeeeeneeennnas
8.3 Spectral factOrizZation..ceeeeeeeeeeeeeoeeeeooeeoenceonnnsnnnes
SPECTRAL ESTIMATION. ..t e veeeesooacasecceceeasosennsnnnsasnnnnsnsnsss
9.1 Harmonic analysis........... o 8 eieie s w e v e e e e e e e a8 W 6 K e e I
9.2 The pPeriodogram. cceeeessreeesssoseocecoeecensocnsesasesossnsas
9.3 Specialization for real-valued Signals.....eeeeeeeeeeoeennnnn.
9.4 White noise SAmMPle....ueetveeeeeeereeeeeocnenessosenescasannas
9.5 The Gaussian and chi-square distributionS....ceeeeeeesvesnnsns
9.6 Distribution of the periodogram for a white Gaussian process..
9.7 Distribution of the periodogram for a Gaussian process........
9.8 An example of spectral estimation by transforming the
AULOCOTTElation. cvuereeeeereeeecensecanancansanonaoonns v ¥ sies e
SEISMIC DECONVOLUTION. ¢ ot v eveevosesooencacacsaceesonsnsaensessoosasess
10.1 Exploration for 0il and Natural ZaS.......ceeeeeeeeeecsneenenns
10.2 Sedimentary model of the earth's CIUSt....eeececeeneenencnenns
10.3 Random reflection model.....ceeeeeeeeeneeneenns T R
iv




re———— T ——

CONTENTS (Cont.)

11. SPEECH DECONVOLUTION....ccceoeoovcnocsconccanncccccconnocroereosrcs 358
11.1 Speech production......cce:e. cesesemememe weoeecssssseoscsnuse 358
11.2 Acoustic tube model......cceuee. Weesssesessesasassecsasesnne 360
APPENDIX A...ceescessocssaacsssssaccss 5 i 0 % 8 se ve ) 9 e e T Py Ay veees 363
BIBLIOGRAPHY .. vovecasacsacosossssssososssecsosaseasceesosonnreosororsess 367
ANSWERS TO PROBLEMS ...t eeeccsssenseassassascocansoacnsoacasceroorsirssss 369



CHAPTER I
COMPLEX VARIABLES AND PHASORS

1.1 The real and complex number systems

The majority of the techniques and considerations in digital signal pro-
cessing are based on a knowledge of complex numbers. In other areas of study,
e.g. the Laplace transform, the frequency response of linear systems, the solu-
tion of differential equations, the use of complex numbers are necessary or at
least convenient. In electrical engineering, complex numbers are useful for
determining the steady-state behavior of electrical circuits and they appear
in the complex exponential form of Fourier series. As we shall see, the study
of digital signals and systems is simplified by the introduction of complex
numbers. A satisfactory discussion of the main concepts of digital signal
processing must be based on an accurately defined number concept. In this
context, let us review the real and complex number systems.

In ancient times, the concept of length was an important use of numbers.
For example, in terms of some reference measure (i.e. the foot of an individu-
al), the height of a tree was 50 feet, the distance between two villages was
3500 feet, the length of a creek was 35,000 feet, and so on. It was natural
and physically satisfying for length to be a positive number. Hence, people
measured length in terms of positive rational numbers, i.e. numbers of the form
m/n where m and n are integers and m#0. For most situations, this system was
sufficient. However, if one desired to know the length of the hypotenuse of
a right triangle with equal sides of unit length, the answer could not be found
in the system of rational numbers, for Y2 is not a rational number. Thus, the
rational number system was inadequate for a general measure of length and this
led to the so-called irrational numbers, i.e. numbers not capable of being ex-
pressed exactly as the ratio of two integers. Further, by combining the ra-
tional numbers with the irrational numbers we form the real number system.

The purpose of the above discussion has been to show that the rational
number system has certain gaps, in spite of the fact that between any two
rationals there is another. The real number system fills these gaps. This
is the principal reason for the fundamental role which it plays in analysis.

The concept of a real number is so familiar to all of us that we some-
times take for granted that our entire number system can be viewed as an ex-
tension of real numbers. For example, the length of a football field, the
temperature in Alaska during the winter months, or the roots of the equation
x2-1 = 0 are all real numbers. The length of a football field (100 yards) is
a positive real number. On the other hand, the temperature in Alaska during
the winter months might reach -20°C, which is a negative real number. We say
that the equation x2-1 = 0 has real roots x = -1 and x = +1 and the sequence
{1,0,3.14159,v2,2/3} represents a finite-length sequence of real numbers.
Further, the fundamental units of mass, length, and time and dimensional quan-
tities such as energy and speed are expressed as real numbers. Howevery, let
us consider the roots of the equation x2+1 = 0. The solution of this equation
is x = /-1 and x = -/:I, but since the square root of a negative number is not
defined in the real number system, we need a new number system in order to




furnish a solution for this situation. Just as the irrational numbers filled
the gaps contained in the rational number system, the complex numbers fill
the gaps contained in the real number system. The key to the complex number
is the imaginary unit

Thus, the solution of the equation x2 + 1 = 0 is now represented by x = #*i,
where i is a 'new' unit not contained in the set of real numbers. Let us con-
sider the solution of the system x2 - x+1=o0. By the quadratic formula we
obtain

+ /=3

x=21373
2 2

Thus, the two roots of this system are x = % 1 Zgjand x=21-3i KE:
2 2

N =

We see that these roots are expressed as a combination of real numbers and
the imaginary unit i. The plus sign (+) in the root

X = 14 i.ﬁi,
2 2
however, does not mean addition, for addition makes sense only when we are
adding real numbers to real numbers. Similarly, the minus sign suggesting
subtraction (-) in the root

1 . /3

S o= ] e——

2 2

does not denote subtraction, since subtraction is valid only when we subtract
real numbers from real numbers. In general, if x is a real number, y is a
real number, and i is the previously defined imaginary unit, then what does
the representation x + iy mean? At this point we need a definition.

We now define a complex number as an ordered pair of real numbers de-
noted by (x,y). Ordered means that (x,y) and (y,x) are regarded as distinct
if x # y.

The complex numbers are subject to certain laws which we now give.

Equality: (x;,y;) = (x3,yp) if and only if x) = x5 and y; =y,
Addition: (xy,y1) + (X5,y5) = (X1+X,,y1+y)) (1)

Multiplication: (xl,yl)(xz,yz) = (xlxz-ylyz,xly2+ylx2);

C(x1,¥y) =(Cx1,Cy;) for any real number C.
We shall usually use the more customary notation
z=x + iy (2)

to denote the complex number (x,y). The real number x is called the real part
of z and is denoted as

X = Re(z) (3)



The real number y is called the imaginary part of z and is denoted as
y = Im(z) (4)
The above laws in the customary notation are
Equality: xl+iyl = x2+iy2 if and only if x5 = X3 and y; = ¥y
Addition: (xl+iy1) + (x2+iy2) = (x1+x2) + i(yp+yy)

Multiplication: (x1+iy1)(x2+iy2) = (xlxz-ylyz) + i(xly2+ylx2);

C(xl+iy1) = Cxl+iCyl for any real number C.

We see that two complex numbers xl+iy1 and x2+iy2 are equal if and only
if the real and imaginary parts of the first are equal respectively to the
real and imaginary parts of the second. Thus, in considering equality between
two complex numbers, we must include both components of the complex number,
namely, the real part and the imaginary part. Moreover, the vanishing of a
complex number implies not one but two conditions, namely, that both the real
part and the imaginary part of the given number are zero.

The complex number

z* = x - iy (5)

is called the complex conjugate of z, or simply the conjugate of z. The fol-
lowing rules hold:

(a) (z*)* =2z

(b) 2z + z* = 2Re(2z)

(c) z - z* 2iIm(z)

(@)  (zy+zy)* = zy*+z)* (6)
(e) zlzé* = z,%z)

(£)  (2123)* = z3*25%

(g) zz* is real and positive (except when z = 0)

The proofs of (a) - (f) follow directly by use of the definitions (2) - (5).
To prove (g), we form

zz* (x+iy) (x-1iy)

(7)

- %Pyl

and note that x2+y2 is a positive real number.



If z is a complex number, its absolute value |z| is defined as the non-

negative square root of zz*; that is
lzl= (zz%)"
The following rules hold

(a) |z| > 0 if z#0 and lz! =0 if z = 0.

(b) |z*| = |z
(c) Izlzzl = lzlllzzl
(@ |Rre(z)| < |z]

(e) |z1+z2| S |z1|+|zz| (triangle inequality)

The proofs of (a) and (b) follow from definition (8).

|z1z2|2 (z323) (z125) * = (z125) (2 *2,%)

(z121%) (252,%) = |21|2|22|2

(8)

(9)

To prove (c), we form

(10)

and the desired result follows by taking the positive square root of each side.

To prove (d), we note that x2 < x2+y2. Hence

|x| = &2 < fa2ey?

Since |x| = IRe(z)l and Izl = Vx2+y2 , the desired result follows.
To prove the triangle inequality (e), we note that z31*z, is the conjugate

of zyz,*. Using 6(b) it follows that
142

z,2p% + z§z, = 2 Re(z12z,%) (11)
We now form
|2%25[2 = (22,) (2 +2y) *
= (z1+zz)(zl*+zz*)
= zy2,* + z,z* + z2,2,* + z2,2,% (12)
Rewriting equation (12) with the aid of equation (11) we obtain
lzl+22|2 = Izllz + 2Re(zyz,*) + |22|2 (13)
We observe that for any complex number z,
E -|z| £ Re(z) £ |z] (14)
; -lz| £ Im(z) £ |z




Hence,
<
Re(z12,%) < |z)25%] = |21]]2,*]
or
<
Re(zy2,%) = |z,]]z,] (15)
Substitution of equation (15) in (13) yields
|21+2,|2 £ [2q]2 + 2|zl||22| + |z,|?
or
|z1+22|2 b (|z1|+|zz|)2 ‘ (16)
The triangle inequality (e) follows by taking the square root of both sides
of equation (16).
The definitions and algebraic manipulations discussed above play an es-
sential role in digital signal processing. Frequently, we shall not only be

concerned with the complex number z, its conjugate z*, and its absolute value
|z|, but also with its reciprocal 1/z = z-l., 1In particular, if z # O then

1. =z o _z° (17
z  zz* |z|2

or
1o _x - ¥ (18)
z  x%+y? x2+y?

The quotient z;/z,; can be simplified by multiplying both numerator and denomi-
nator by the conjugate of the denominator:

21 o z1%p* o (X1+iyy) (xp-iy)) (19)
z, zZyzo* (x2+iy2)(x2-iy2)

or
2) o (XpHvgyy) 4 (XY 7%y Y)) (20)
T Tx2+vZ
Z X33 X2t

The real numbers, which include both the rational and irrational numbers, are
ordered. Thus, inequality relations are valid; for example: if a<b and k>0,
then we know that ka<kb. For example, 2(-2/3)<2(l) or -4/3<2. However, the
use of inequality relations between complex numbers does not make sense. To
see this, let us consider one of the simplest complex numbers, namely, the im-
aginary unit i. If the complex numbers could be ordered, then we would have a
statement such as -i<o<i. Multiplying this inequality by i we obtain




-i2<p<i?

or
l<o<-1

which is a contradiction. Thus, the complex numbers cannot be ordered, i.e.,
the use of inequality relations between complex numbers is not meaningful.
We note that in some of our manipulations involving |z|, Re(z), and Im(z) we

used inequality relations. This usage is valid because |z|, Re(z), and Im(z)
are real numbers.

PROBLEMS FOR ARTICLE 1.1

In Problems 1-8 reduce the numbers to the form z-x+1y
1. (4 + 31i) - (2 + i)
2. (5 = 2i)(-3 + 1)
3. i(3 - 5i)
4. (2 -1i)/(1 + 1)
5. (1-14i)3
6. T3 - 1)(2+ 1) (3 + 1)

7. 1+3i,2-4i
4-i 5i

8. 2i
(i-3) (i+2)

9. Solve for the real numbers x and y:
(2 - 31)2 - 3(x + iy) = x - iy

10. Show that each of z =1+ i and z = 1 - i satisfies
22 -2z + 2 = 0.

"

11. Write i = (0,1). Find i2, -i, i3, i% in this notation.

12. If a and b are complex numbers, under what conditions does the
following inequality hold:

a->b
1-a*b

< 1

In Exercises 13-16 find Re(z), Im(z), z*, |z|, and z_l




13. 3 -1i3

N
Il

14. z= -i4
15. z=5

l16. z=5+ 2i

1.2 The complex plane

Much of our work in digital signal analysis will be centéergd on.@i3us
sions involving the complex plane. It is important that we dgfinﬁhbaé co
cept of the complex plane and its relationship to the complex hq@bér z.

There is a one-to-one correspondence between ordered pairs of’ num-
bers (x,y) and complex numbers x + iy . For example, corresponding to the
ordered pair (3,-5) or x = 3, y = =5, is the complex number 3 - 5i, and con-

versely. It is natural to associate the complex number x + iy with the point
that has rectangular Cartesian coordinates (x,y) in the x-y plane. We say a
complex number z is in rectangular or Cartesian form if it is written as

z=x + iy (1)

where x and y are real numbers.

In plotting the real function y(x) in the x-y plane, we plot x as the
abscissa on the x-axis and y as the ordinate on the y-axis. In an analogous$
fashion, we plot Re(z) = x as the abscissa on the x-axis and Im(z) = y as the
ordinate on the y-axis when representing a complex number z in Cartesian form.
However, in the case of complex numbers, we shall refer to the x-axis as the
real axis and the y-axis as the imaginary axis. This two-dimensional space
is referred to as the complex plane or the z-plane and is shown in Figure 1-1.

. . A
imaginary Y
axis
-y-- - --¢ z=x + iy = (x,y)
Complex )
plane !
|
]
(o] x X
real axis

Figure 1-1
Cartesian or rectangular form of the

complex number Z in the complex plane.

Now consider the point z = x + iy in the complex plane. This point also
has polar coordinates (p,0):



sz +y2 = |z (2)

tan—l(i)

p

e

In evaluating the angle 6, care should be taken in determining the correct
quadrant, for tan~!(y/x) = tan-1(-y/-x) and tan"l(y/-x) = tan'l(—y/x).

The type of representation given by equation (2) is known as the polar
form of a complex number. The polar coordinate p is the absolute value of
2z; that is

p = |z

The absolute value |z| is called the modulus or magnitude of z. The polar
coordinate 6 is called the argument of z, which is written as

6 = arg(z)

The argument arg(z) is also called the angle or phase of z. In fact, we can
think of the polar form of z as being represented by a vector or directed line
segment which joins the origin (0,0) to the point (x,y). If z is represented |
as a vector, then the vector length is p = |z| and the direction angle of this j
vector is 6 = arg(z). The polar form of the complex number z is illustrated
in Figure 1-2, together with the relationship of the polar coordinates to the |
Cartesian coordinates.

. M 4 ‘
imaginary = = ,
axis J P IZI xz‘yz
Complex y P 6 = tan~l( L )
plane = [T~ ~-- -3z Y Z *
1 X =9p cos 6O
P I
0 | Yy =p sin 0
1L X o x
[e)
real axis

Figure 1-2
Polar form of the complex number z, represented by the vector
OP with magnitude |z| and angle 6.
From Figure 1-2, we see that

]zl cos 6

p cos 6

X

(3)

[z| sin 6

y p sin 6

Thus, the complex number z = x + iy can be written in the equivalent polar
form




z=p cos 6 + i p sin 6
(4)

| z| (cos @ + i sin 6)

[]

Since cos (0 * 2nm) = cos 0 and sin (6 * 2nm) = sin 6 for n = 0,1,2,... , we
notice that 6 plus any integer multiple of 2T can be substituted in equation
(4) without changing the value of z.

For the polar representation of complex numbers, we sometimes use the no-
tation

z=pL 0= |z| L0 (5)
The above is interpreted as "the complex number z with magnitude |z| at an
angle 0".

If we have two complex numbers z}; and z in polar form, their product can
be written as

zlz2=[p1(cos 8; + i sin 61)][pz(cos 62 + i sin 62)]
(6)
= plpzl}cos 01 cos 0 - sin 0] sin 8,)+i(sin 61 cos 6z+cos 8) sin 62)]
= plpz[ cos(6;+63) + i sin (91+92)]

and their quotient (for Z,; # 0) can be written as

N
—

(]
+

p1 (cos 61 i sin 8,)

N

N
+

P2 (cos 62 i sin 63)

= py(cos 81 + i sin 61) (cos 62 - i sin 02)

p2(cos 62 + i sin 02) (cos 62 — i sin 62) (7

=p; (cos 6] cos 6, + sin 6; sin 8,) + i(sin 8, cos 8, - cos 8; sin 0,)
P2

c05262 + sinZ@,
= o1 [cos(01-65) + i sin (8;-0,)]

P2

Further, with the notation defined in equation (5), these results can be
written as

zlzz = (plpz) L (91+92)
(8)
z) P
= = (—I)L(el"ez) ’ 92740
Z2 P2



