L

BEaAn

HIGH PERFORMANCE
COMPUTING II

1 I) 302:)- 53
Hé3%
199 |

HIGH PERFORMANCE
COMPUTINGII

Proceedings of the Second Symposium on
High Performance Computing
Montpellier, France, 7-9 October 1991

3560333

edited by

M. DURAND

IBM
Montpellier, France

F. EL DABAGHI

INRIA
Rocquencourt, France

4 (I

E9560333
1991
NORTH-HOLLAND
AMSTERDAM « LONDON « NEW YORK « TOKYO

ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25,
P.O. Box 211. 1000 AE Amsterdam. The Netherlands

Distributors for the United States and Canada
ELSEVIER SCIENCE PUBLISHING COMPANY.INC.
655 Avenue of the Americas

New York, N.Y. 10010, U.S.A.

ISBN: 0 444 892249
@ 1991 ELSEVIER SCIENCE PUBLISHERS B.V. All rights reserved.

No part of this publication may be reproduced. stored in aretrieval system. or transnntted. i any form or by
any means, electronic, mechanical. photocopying. recording or otherwise. without the prior writien
permission of the publisher, Elsevier Science Publishers B V.. Permissions Department. PO, Box 5214,
1000 AN Amsterdam. Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright
Clearance Center Inc. (CCC). Salem. Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies ot parts ot this publication may be made in the LS AL AT other
copyright questions. including photocopying outside of the U.S AL should be referred 1o the copyright
owner. Elsevier Science Publishers B.V.. unless otherwise specitficd.

Noresponsibility is assumed by the publisher for any injury and/or darage 1o persons or property as a matte:
of products liability, negligence or otherwise. or from any use or operaiion of any methods. product.,
instructions or ideas contained in the material herein.

Printed in the Netherlands

PREFACE

The Second.Symposium on High Performance Computing takes place from October 7th
through 9th, 1991 in Montpellier, France. This conference is co-organized by two academic
computing centers: CNUSC! and CNSF2, a research institute: INRIA3, and a computer com-
pany: IBM France.

This is the second of a series of biennal symposia which intend to be a forum for specialists
working in various domains associated with Intensive Computing (Parallelism, Vectorization
and Scalar) so as 1o discuss the state of the art. In fact, during the last decade, the growth
of scientific computing devices has been firmly sustained: expanding size of memories, in-
credible CPU performance unheard-of just a few years ago, graphic tools transforming results
treatment, networks drastically reducing communication time between computers, etc. As a
matter of fact, this development has led to an indirect rapprochement, essential today, of
domains which unul recently were quite separated.

For instance, the interaction of computer architecture and numerical methods through new
disciplines such as Parallel Numerical Analysis, allows optimal simulations as well as their
applications onto complex models unreachable yesterday.

If it seems of a prime necessity for the hardware designer to take into consideration the mul-
tiple and often conflicting needs of the scientific computing community, it also seems obvious
for users to steadily devote time to update their knowledge of computing environments.

So, the main purpose of this meeting is to give scientists an opportunity to investigate inter-
actively areas such as Architecture of Supercomputers, Compilers, Algorithms, Computational
Methods, Numerical Applications, etc.

This document holds the contributed papers selected for the Conference. They are arranged
in three separate topics:

® Parallelism: Architecturés, Algorithms and Compilers
¢ Numerical Methods for Supercomputers

* High Performance Computing Applications

OOy 1)

\

b Centre National Universitaire Sud de Calcul, Montpellier, France
£ Cornell Natonal Supercomputer Facility, lthaca, USA

3 Institut National de Recherche en Informatique et en Automatique, Rocquencourt, France

Vi

We greattully thank CNUSC, CNSF, INRIA and IBM for their logistic and scientific support.
We are quite appreciative of the sponsorships of Pole informatique, Montpeliier LK.
Technopole, District de Montpeilier, Departement de I'Hérauit, Région Languedoc-Roussillon,
Multipole Technologique Regional, IBM Europe and IBM France who have made this event
possible.

In addition, we would like to express our gratitude to the members of the Scientific Commit-
tees for their active participation. Finally, special thanks to the following persons who, on
account of their various and valuable contributions, greatly helped us in making this sympo-
siumn a success. They include R. Glowinski, J-L. Delhaye, W. Jalby, A. Lefevre, A. Rivera and
our C3NI colleagues: S. Carta, B. Cappelaere and G. Urbach.

M. Durand, . L:l Dabaghi
SHPC Chairmen
Montpellier, June 1991

PROGRAM COMMITTEE

Z. Barzilai, IBM Yorktown Heights (USA)

C. Bax‘devan;. Universiie Paris Xiil / ENS Paris (France)
C. Benoit, Universite Montpellier Il (France)

L. Brown, Cornell University (USA)

J-L. Delhaye, CNUSC, Montpellier (FFrance)

J. Demaille, Universite Montpellier | (France)

I. Duff, CERFACS, Toulouse (France) / RAL (UK)

J. Erhel, IRISA, Rennes (France)

L. Fezoui, INRIA Sophia Antipolis (I'rance)

P-J. van der Houwen, CWI, Amsterdam (The Netherlands)
W. Jalby. INRIA Rocquencourt (France)

M. Kalos, Cornell Theory Center (LUSA)

L. Krause, RWTHI Aachen (Germany)

D. Laforenza, CNUCE, Pisa (italy)

P. Leca, ONERA, Chatilion (France)

O. Mc Bryan, Colorado University, Boulder (USA)

F. Marcmorchnnn, CEMAP IBM, Paris (France)

O. Pironneau, Universite Paris VI / iNRIA (France)

R. Scarborough, IBM Palo Alto Scientific Center (USA)
P. Squazzero, IBM ECSEC, Rome (Italy)

K. Stuben, GMD, Sankt Augustin (Germany)

CONTENTS

PARALLELISM: ARCHITECTURES, ALGORITHMS AND COMPILERS

. "Combining Allocation and Scheduling”
N. Abdennadher, J.C. Angue

"Modelling and Evaluation of a Task Farm Chemical Application on MIMD
Architectures”
R. Baraglia, R. Ferrini. D. Laforenza, R. Perego, O. Gervasi, A. Lagana

"A Study of 1/O Architecture for High Performance Next Generation Computers”
A. Sah, D.C. Verma, V.G. Oklobdjiza

“Data Locality and Memory System Performance in the Parallel Simulation
of Ocean Eddy Currents”
dJ. P. Singh, J. L. Hennessy

"Scalability, Granularity and Performance of Parallel Algorithms”
L. Brochard

"A Parallel Genetic Algorithm for Process-Processors Mapping”
T. Muntean, E-G. Talbi

“Fast Sorting Algorithm Based on the Massive Parallelism of Optical Computing”
Y.B. Karasik

"Crystal Scheme, A Language for Massively Parallel Machines”
C. Queinnec

“Implementation Issues of an Efficient Dependence Analysis Component
for Parallelizing Compilers”
&-E. Al-Ayyoub, T. Terzioglu, M. Guler

“On Parallel Program Generation for Massively Parallel Architectures”
M. R. Werth, P. Feautrier

"Automatic Parallelization of Structured IF Statements without IF Conversion”
M.C. Giboulot, F. Thomasset

"Debugger Visualizations for Shared-Mernory Multiprecessors”
C.M. Pancake, S. Utter
"Heterogeneity in High Performance Computing”

~D. Menascé, V. Aimeida

17

31

a3
59
71
83

91

103
115
127
145

159

X

"Micro-Measurements of a Supercomputer and Models for Memory Contention ”
H. Hafner, W. Schonauer

”A Simulator for Performance Prediction and Evaluation”
G. S. Singh, D. A. Rane, S. Gumphekar, S. Apte

A Case-study in Performance Programming: Seismic Migration”
G. Almasi, B. Alpern, L. Berman, L. Carter, D. Hale

“Matrix Factorization on a RISC Workstation Network”
A. Benzoni, V.S. Sunderam, R. van de Geijn

“Lattice Gas Computing on a RISC Workstation”
S. Succi, G. Betello, F. Papetti

NUMERICAL METHODS FOR SUPERCOMPUTERS

“The von Neumann-Ulam Monte Carlo Method for Solving Systems of | inear
Algebraic Equations on a Parallel Computer”
E. Kamgnia

“The Parallel Solution of Triangular Systems of Linear Equations”
R. Dias da Cunha, T. Hopkins

“Evaluation of an Element by Element Preconditioner for the Conjugate
Gradient Method”
J. Erhel, A. Traynard; M. Vidrascu

"High Performance GEMM-based Level-3 BLAS: Sample Routines for Double
Precision Real Data”
B. Kagstrom, P. Ling, C. Van Loan

“A 2-D Finite Volume/Finite Element Euler Solver on a MIMD Parallel
Machine”
L. Fezoui, F. Loriot, M. Loriot, J. Regere

“A Cartesian Grid Finite Element Method for Potential Flows”
Q.V. Dinh, J.W. He

“Concurrent Fvaluation of Boundary Conditions for the Euler Equations”
P. Olsson

"Calculation of Incompressible Channel Flow on a Distributed-Memory
Parallel Computer”
J. Chung, M. Holt

“Direct Solution of Two-Dimensional Finite Element Equations on
Distributed Memory Parallel Computers”
0. Zone, R. Keunings ’

"Parallel Stochastic Finite Element Analysis on Distributed Memory
Multiprocessors”
S. Chinchalkar, D. L. Taylor

“Implementation of Domain Decomposition Methods on Shared Memory
Multiprocessors”
L. Giraud, J.C. Miellou, P. Spiteri

“An Efficient Algorithm for the Numerical Solution of a Linear Hyperbolic
System Using Vector-Parallel Hardware”
M. Asch

169

181

195

207

219

233

245

257

269

283

295

307

321

333

345

357

369

+ "Simulated Computation in Automatic Classification”

P. Michaud

"Particle Simulation Schemes for Microscopic Dynamics”
H. Babovsky

"On Definition of Matrices” Spectra”

- V.I. Kostin

- “Stability Analysis in Aeronautical Industries”

F. Chatelin, S. Godet-Thobie

“Reducing Round-Off Error in Chebyshev Pseudospectral Computations”
E.E. Rothman

. "Arithmetic Reliability of Algorith}ns"

F. Chatelin, V. Frayssé

HIGH PERFORMANCE COMPUTING APPLICATIONS

“"An External Unsteady Flow Navier-Stokes Solver on a Vector Computer”

M. Braza, G. dJin, P. Nogues, A. Sevrain

“An Accurate and Efficient Code for the Direct Numerical Simulation of
Transition to Turbulence”
U. Rist

» "Inviscid Hypersonic Nozzle Fiows in Chemical and Vibrational

Non-Equilibrium State”
M.C. Druguet, D. Zeitoun, R. Brun

“On the Numerical Treatment of the Advective Terms in 3D Shailow Water

Models”
E. D. de Goede

“Finite-Difference Time-Domain Analysis of Arbitrarily Shaped H-Plane
Waveguide Discontinuities”
E.A. Navarro, V. Such

“INumerical Study of Dynamical Properties of Very Large Percolating
Clusters in d-Dirmensions” .
. Royer, C. Benoit, G. Poussigue

“INumerical Calculations of Electronic Structure of Lairge Period
Semiconductor Strained Superiatlices”
D. Eertho, D. Boiron, A. Simon, J.M. Jancu, C. Jouanin

"Applications of Computer Simulation of Molecular Dynamics:
Conformational Studies, Molecular Modeiing and Free Energy Pertubation
Calcu'ations on New Serine Proteinase Inhibitors”

L. Chiche, A. Heitz, A. Padilla

"Calculation of Geomeirical Descriptors and Topological indices of
Molecules. A Vectorized Program”
F. Torrens, E. Orti, J. Sanchez-Marin

"High Performance Computing in Fluid Mechanics Applied to Design
Activities in transport Industry”
N. Montmayeur, S. Canta, S. Aita, A. Tabbal

Xi

381

397

407

415

-423

453

467

179

491

503

513

549

561

N oo e o

Xii

“Lattice Gases: A New Approach to Single and Multiphase Flow Simulations”
S. Zaleski

“Fully Implicit Spectral Methods for Convection”
dJ. Frohlich, T. Gerhold, J.M. Lacroix, R. Peyret

“Numerical Analysis of Thermosolutal Convection by a Control Volume
Method” i
C. Beghein, F. Allard, P. Depecker

“On the Difficulties in Computing Bifurcation Points: Application to
Buoyant Plumes”
G. Desrayaud, G. Lauriat

“Transports in Reconstructed Porous Media”
J.F. Thovert, J. Salles, P.M. Adler

« "Viscoelastic Model for the Human Cornea”
K. Hanna. F.E. Jouve, A. Kaiss, P. Le Tallec

"Computer Integrated Manufacturing, Parallelization of Applications,
Results and Criteria for Further Candidates”
P. Massotte, C. Paul, D. Robert

“Valuation of Options on Bonds on a Vector and Parallel Computer”
C. Daher, M. Romano

'SPES: A Parallel Forecasting Model for the Italian Social Security
Institute”
P. Di Chio, S. Indrio, A.M. Marchetti

575

585

597

609

623

631

641

653

663

PARALLELI SM:. ARCHITECTURES,
ALGORITHMS AND COMPILERS

High Performance Computing I1
M. Durand and F. El Dabaghi (Editors) 3
© Elsevier Science Publishers B.V. (North-Holland), 1991

Combining allocation and scheduling
N. ABDENNADHER, J.C. ANGUE

Laboratoire d'Automatique Industrielle et Humaine. LAIH - UA CNRS 1118
Université de Valenciennes et du Hainaut Combrésis
Le Mont Houy 59326 Valenciennes cedex - France.

Abstract

This paper deals with a heuristic algorithm for Task Allocation Problem
which takes into account the precedence rules between tasks and the
scheduling policy implemented on processors of the target machine (Time
sharing in our case).

This algorithm does not only aim at mapping the tasks into a given
architecture but also at "building" the processor network which suits best the
structure of the parallel program. This construction must meet hardware
constraints such as number of processors, number of links per processor, basic
structure of the network, etc ... The algorithm is evaluated in a concrete case of
parallel algorithm written in OCCAM and executed on Transputer network.

L INTRODUCTION

Recent computer applications require systems which process faster and
faster. The attempts to meet this requirement based on technological
improvements alone have failed because of the limitations of physical laws.
The best way to solve this problem is to share the processing among several
processors : The sequential program is thus transformed into a parallel
program composed of several inter-communicating tasks. However, one of the
most important problems encountered in paraliel programming is that of
allocating tasks to processors so as to achieve minimal execution time. This
problem, known as "Task Allocation Problem" (or Mapping Problem) is NP-
COMPLET : Tts complexity grows exponentially with the size of data. Two types
of algorithms are used to solve the task allocation problem :

- Exact algorithms which lead to an optimal solution (allocation) but
whose complexity is minored by an exponential function.

- Empirical algorithms whose complexity is majored by polynomial
functions, but which do however supply solutions nearing the optimum.

Task allocation has to take into account two opposite criteria :

- Communication costs : Intraprocessor communication costs are quite
trivial against those of interprocessor communications. Thus, minimizing
these costs amounts Lo assigning tasks to a single processor.

- S : To take advantage of the parallelism inherent to the
parallel program, tasks need to be allocated to different processors.

Solulion attempts for the mapping problem can be classified into five
categories : graph theory [1-3), integer 0-1 programming [4-5], branch and
bound methods [6 -7], heuristic approaches [8-10] and simulated annealing
approaches [11-12].

In this paper, we propose a heuristic algorithm for task allocation
problem which takes into account the precedence rules between tasks and the
local scheduling policy implemented on each processor : this is necessary to
give a realistic definiticn of the processor load. This algorithm does not only
aim at mapping the tasks into a given architecture but also at "building" the
processer netwoerk which will perform the application. This censtruction must
meet, hardware constraints such as number of processors, number of links per
processor ... ete. This algorithm is used to map parallel programs written in
OCCAM and implemented on Transputer neiworks.

This paper is organised as follows: section II presents a heuristic
algorithm for task allocation problem. Section JII gives experimental resulis.
Finally, section V offers conclusions as well as directions for future research.

IL HEURISTIC ALGORITHM FOR TASK ALLOCATION PROBLEM

The parallel program is represented by a data flow oriented graph
Gt = (T, At) where nodes are tasks (T) and links are data flows between
tasks (At) (Fig. 1). (T, T;) belongs to At means that Tj sends data to Tj:Tiis
an immediate predecessor of Tj. A task is a sequential program which
integrates communication routines - sending and receiving messages. Two

virtual tasks, corresponding to the start and the end of the parallel program,
are added to the graph : Start and End.

Fig. 1 : data flow graph.

The proposed algorithm aims at searching the allocation (of tasks {713j)
among processors {P;!) which minimizes the execution time of the parallel
program, in other words the ending date (EDengd) of the task ¥nd. This
algorithm is composed of three phases :

1- The first one, called greedy phase, consists in distributing the tasks
among processors. During this phase material constraints such as the
number of links or the initial structure of the network are not taken into
account. This phase has two goals :

a) to assign each task to a processor,

b) to build an "ideal" network which may not be achieved. This network is

made of the set of processors P, linked by connections (calied virtual links),
which support inter-tasks communication channels

2- The second phase, called multiplexing phase, consists in changing the
ideal processor network defined in the first phase into an effective network
which meets the material constraints. This aims at multiplexing virtual links
on one or more physical links. Multiplexing should minimize idle times due to
the use of the same physical link by several channels of communication. When
the waiting time increases, it is sometimes better to use a longer path
including many physical links : this is the "routing".

3 -The third phase, called routing phase aims at defining the optimum
path for each virtual link not assigned to a physical link during the second
phase.

IL1. Greedy phase

The greedy phase searches for an optimal partitioning of the program into
p groups (p is the number of processors). We suppose thati the processor
network is completely connected. The optimal partitioning is that which
minimizes the execution time of the whole program ; that is to say the ending
date (ERQend) of the last task End. To process this date, it is necessary to
compute the starting date (SD;) and the ending date (ED;) of all tasks :

SDj

Max (EDj + ¢ji)
Tj € PRED;

EDi = SDj + wiq + aig- _
Where SD;j (resp. EDj) is the start (resp. ending) date of the tasks Tj.

wiq is the execution cost, expressed in time, of the task Tj when it is
executed by the processeor Pq. cij is the communication cost, expressed in
time, between Tj and Tj. ajq is the idle time of task Tj (on processor Pq) due to
the execution of several tasks on processor Pq.

ajq depends on two factors :
- the temporal allocation of the tasks assigned to processor Pq.
- the scheduling policy implemented on each processor.

At each iteration, the algorithm tries to assign one task Ti, whose

predecessors have already been mapped, to a processor Pq belonging to P. The
ending date of the latest task already mapped (ENDDgq) is calcuiated according
to the new allocation. The algorithm holds the processor Pely which
minimizes ENDDyg :

ENDDelu

= Min ENDDq
k’q eP
ENDDq = Max EDj
Tj alreacy assigned
or Tj =Ty

The number of processors is not necessarily known from the beginning.
Thus, the definition of the ideal architecture of the processor network and the
number of processors p are both needed from the start. The set of processors P
is assumed to be emply at the initialisation. At each iteration, a new processor
Pp is added to . The algorithm tries to assign a Task Tji, whose predecessors
have already been mapped, to one of the processors belonging to P. The
maximum ending date of the already assigned tasks (ENDDg) is calculated
according to the new allocation. The algorithm keeps the processor Pely which
minimizes ENDD.

Two situaticns ray arise :
1 -Pelu is equal to Pp : this means that the new processor Pp has

contritbuted to a faster execution of the parallel program. Pp is kept in P anc the
number of processors, p, is incremented by 1.

2 -Pely differs from Pp. Adding a new processor Pp does not produce any
improvement in the execution time of the paralle! program. Pp is thus removed

from P.

The multi-tasking phenomena involves waiting times due to the share of
the processor among several tasks. These idle times depend on both the
temporal allocation of the tasks and the scheduling policy implemented on
each processor. In this paper, we assume that this policy is a Time Sharing
one which consists in sharing processor time between all the tasks assigned to
a given processor. During its execution, the task can have one of the following
three states :

1) waiting state : the task is waiting for data from its predecessors.

2) processing state : the task is processing the data (received from its
predecessors) in a specific way. The task is said to be ready.

3) sending state : the taks is sending the results to its successors.

At each task Ti which is ready, correpond two variables which represent
its descriptive :

- ajq : the idle time of Tj (counted when Tj goes from a waiting state to the
processing one) due to the execution of several tasks on a same processor,

- exeCiq : the "performed part” of the task Tj (expressed in time) : execiq <
qu &

To process the idle time ajq of all tasks belonging to Tq (Tq being the set of
tasks assigned to Pq), it is important to process intervals during which the
number of "ready” tasks is constant (Fig. 2). These intervals are bound by two
events (eh and eh4+1) which represent the starting and/or the ending date of one
or several tasks.

1
| I | ey
| N S | - |
i o T2 | |
€0 e] €2 e3 ¢4 es

Fig. 2 : Temporal allocation of tasks

Events eh are however difficult to process as they mainly depend on the
idle times ajq.

If eh is assumed to be known, two situations may occur :

