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Reviewers’ Comments

Finally, a book devoted to MIMO from a new perspective that bridges traditional borders
between propagation, channel modeling, signal processing, and space-time coding. Cov-
ering the latest European and American research results, the book gives a comprehensive
treatment of general MIMO topics and provides surprising insights into advanced features,
such as polarization, the finite-SNR behavior of space-time coding schemes in correlated
channels, as well as correlation situations leading to higher mutual information than the
i.i.d. Rayleigh channel. This is a book of high reference value combining intuitive and
conceptual explanations with detailed, stringent derivations of basic facts of MIMO.

Ernst Bonek

Emeritus Professor

Technische Universitit Wien, Austria, former Chairman of Working Groups on
Propagation and Antennas in COST 259 and COST273

Claude Oestges and Bruno Clerckx have put together a survey of real-world MIMO propa-
gation channel models and the performance of space-time coding and pre-coding schemes
in such channels. This book offers important insights into how space-time coding can be
tailored for real-world MIMO channels. The discussion of MIMO propagation models is
also intuitive and well developed.

The book is both valuable and timely for wireless engineers since MIMO is now entering
all the emerging broadband standards such as WiFi, WIMAX and 3GPPLTE.

Professor Arogyaswami J. Paulraj
Stanford University, CA



Preface

When we started thinking about writing this book, we had been working together for more
than five years on the borderline between propagation and signal processing. Therefore, it
is not surprising that this book deals with propagation models and design tools for MIMO
wireless communications. Yet, this book should constitute more than a simple combination
of these two domains. It hopefully conveys our integrated understanding of MIMO, which
results from endless controversial discussions on various multi-antenna related issues, as
well as various interactions with numerous colleagues. Obviously, this area of technology
is so large that it was beyond our aim to cover all aspects in details. Rather, our goal has
been to provide researchers, R&D engineers and graduate students with a comprehensive
coverage of radio propagation models and space—time coding techniques.

Much has been written about MIMO. Still, the present issue is to ‘make the thing work’ in
real-word wireless channels and under realistic power constraints. Indeed, both the antenna
size and the transmit power are limited, which imposes some limitations on system design.
As an example, space—time coding designs relying on idealistic propagation models may
lose many of their advantages in more realistic radio channels. Therefore, a true challenge
consists of proposing design methodologies that take MIMO propagation into account.
Often, propagation models are considered by many as the simple combination of various
‘cooking recipes’, typically path-loss laws and tap-delay lines. Similarly, it is sometimes
thought that a wireless transmission scheme does not need to care about the physics of the
radio channel, but only about its impact on the received signals. In other words, propagation
models would mostly be useful for a posteriori testing and modifying specific designs.
Whereas this is certainly an important aspect of propagation models, which is well covered
by IEEE standards, it may not be the only one, especially when dealing with multi-antenna
wireless systems. Not only can radio propagation provide answers to some crucial questions
of MIMO related problems, but it is also of outstanding importance for designing efficient
transmission schemes. As a consequence, our approach builds on a deep study of MIMO
propagation aspects, naturally including, but not limited to, classical simulation models.
It shall enable designers to develop robust space—time coding schemes based on solid
theoretical developments allied to a strong propagation-motivated intuition.

This book combines a description of the most recent space—time coding techniques with
complete coverage of MIMO propagation models. Under both information theory and error
probability perspectives, we emphasize how real-world propagation affects the capacity
and error performance of MIMO transmission schemes. We then describe innovative and
practical designs of robust space—time codes. We also cover, in detail, precoding schemes,
antenna selection techniques and multi-carrier transmissions. We have attempted to build
the book content as a logical flow, pointing out important theoretical results and providing
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XX Preface

various examples. Although we have tried to supply detailed and clearly indicated proofs
for most results, the reader is sometimes guided to references for greater detail.

Now that this project has come to an end, there are several people who deserve our warmest
thanks. We are first deeply grateful to Professor Arogyaswami J. Paulraj at Stanford Univer-
sity for introducing both of us to the challenging area of MIMO communications. Professor
Ernst Bonek at TU Wien also deserves our gratitude for initiating this project, as well as for
his long-lasting support and careful reading of the manuscript. We also acknowledge the
help of many at UCL during these last years, especially Professor Danielle Vanhoenacker-
Janvier and Professor Luc Vandendorpe. We thank all the past and present members of the
Microwave Laboratory and the Digital Communication Group for their friendly encour-
agement. We also acknowledge the help of Tim Pitts, Kate Dennis, Helen Eaton and Jackie
Holding at Elsevier for their kind and efficient handling of this publication project.

Last but not least, we wish to heartily thank a number of anonymous and not so anonymous
reviewers for their careful reading and most useful advices: Bertrand Devillers, Dr Mischa
Dohler, Dr Maxime Guillaud, Professor Are Hjgrungnes, Marios Kountouris, and Harold
Sneessens.

Claude Oestges
Bruno Clerckx
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