LECTURE NOTES
IN PHYSICS

l. Miiller
P.Strehlow

Rubber and
Rubber Balloons

Paradigms of Thermodynamics




I. Miller P. Strehlow

Rubber
and Rubber Balloons

Paradigms of Thermodynamics

0 Springer



Authors

Ingo Miiller Peter Strehlow

Technische Universitdt Berlin Physik.-Techn. Bundesanstalt
Thermodynamik Abbestr. 2-12

Strafle des 17. Juni 10587 Berlin, Germany

10623 Berlin, Germany peter.strehlow@ptb.de

im@thermodynamik.tu-berlin.de

I. Miiller, P. Strehlow, Rubber and Rubber Balloons, Paradigms of Thermodynamics, Lect.
Notes Phys. 637 (Springer-Verlag Berlin Heidelberg 2004), DOI 10.1007/b93853

Cataloging-in-Publication Data applied for

Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek
lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is
available in the Internet at <http://dnb.ddb.de>

ISSN 0075-8450
ISBN 3-540-20244-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illus-
trations, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting by the authors/editors
Data conversion: PTP-Berlin Protago-TeX-Production GmbH
Cover design: design & production, Heidelberg

Printed on acid-free paper
55/3141/ts-543210



Lecture Notes in Physics

Editorial Board

R. Beig, Wien, Austria

B.-G. Englert, Singapore

U. Frisch, Nice, France

P. Hianggi, Augsburg, Germany

G. Hasinger, Garching, Germany

K. Hepp, Ziirich, Switzerland

W. Hillebrandt, Garching, Germany

D. Imboden, Ziirich, Switzerland

R.L. Jaffe, Cambridge, MA, USA

R. Lipowsky, Golm, Germany

H. v. Lohneysen, Karlsruhe, Germany

I. Ojima, Kyoto, Japan

D. Sornette, Nice, France, and Los Angeles, CA, USA
S. Theisen, Golm, Germany

W. Weise, Trento, Italy, and Garching, Germany
J. Wess, Miinchen, Germany

]. Zittartz, K6ln, Germany

Springer
Berlin
Heidelberg
New York
Hong Kong

London
: . ONLINE LIBRARY
Milan Physics and Astronomy | —————

Paris
Tokyo springeronline.com




The Editorial Policy for Monographs

The series Lecture Notes in Physics reports new developments in physical research and
teaching - quickly, informally, and at a high level. The type of material considered for pub-
lication includes monographs presenting original research or new angles in a classical field.
The timeliness of a manuscript is more important than its form, which may be preliminary
or tentative. Manuscripts should be reasonably self-contained. They will often present not
only results of the author(s) but also related work by other people and will provide sufficient
motivation, examples, and applications.

Acceptance

The manuscripts or a detailed description thereof should be submitted either to one of
the series editors or to the managing editor. The proposal is then carefully refereed. A
final decision concerning publication can often only be made on the basis of the complete
manuscript, but otherwise the editors will try to make a preliminary decision as definite as
they can on the basis of the available information.

Contractual Aspects

Authors receive jointly 30 complimentary copies of their book. No royalty is paid on Lecture
Notes in Physics volumes. But authors are entitled to purchase directly from Springer-
Verlag other books from Springer-Verlag (excluding Hager and Landolt-Bérnstein) at a
332 % discount off the list price. Resale of such copies or of free copies is not permitted.
Commitment to publish is made by a letter of interest rather than by signing a formal
contract. Springer-Verlag secures the copyright for each volume.

Manuscript Submission

Manuscripts should be no less than 100 and preferably no more than 400 pages in length.
Final manuscripts should be in English. They should include a table of contents and an
informative introduction accessible also to readers not particularly familiar with the topic
treated. Authors are free to use the material in other publications. However, if extensive
use is made elsewhere, the publisher should be informed. As a special service, we offer free
of charge ETgX macro packages to format the text according to Springer-Verlag’s quality
requirements. We strongly recommend authors to make use of this offer, as the result will
be abook of considerably improved technical quality. The books are hardbound, and quality
paper appropriate to the needs of the author(s) is used. Publication time is about ten weeks.
More than twenty years of experience guarantee authors the best possible service.

LNP Homepage (springerlink.com)

On the LNP homepage you will find:

—The LNP online archive. It contains the full texts (PDF) of all volumes published since
2000. Abstracts, table of contents and prefaces are accessible free of charge to everyone.
Information about the availability of printed volumes can be obtained.

—The subscription information. The online archive is free of charge to all subscribers of
the printed volumes.

—The editorial contacts, with respect to both scientific and technical matters.

—The author’s / editor’s instructions.



Contents

Stability of Two Rubber Balloons ........................

Kinetic Theory of Rubber ......... ... ... .. ... ... ... ...

2.1 Rubber Elasticity is “Entropy Induced” ...................
2.2 Entropy of a Rubber Molecule ...........................
2.3 The Rubber Molecule with Arbitrarily Oriented Links. ......

2.4 Entropy and Disorder, Entropic Elasticity .................
2.5 Entropy of a Rubber Bar ........... .. ... .. ............
2.6 Uniaxial Force-Stretch Curve ............ ... ... ... ......
2.7 Biaxial Loading ......... .. ...
2.8 Application toa Balloon ........... ... ... .. ... ......
2.9 Criticism of the Kinetic Theory of Rubber .................

Non-linear Elasticity . .................. ... ... ...
3.1 Deformation Gradient and Stress-Stretch Relation ..........
3.2 Material Symmetry and Isotropy .........................
3.3 Material Objectivity .. ...
3.4 Representation of an Isotropic Function ...................
3.5 Incompressibility. Mooney-Rivlin Material .................
3.6 Biaxial Stretching of a Mooney-Rivlin Membrane ...........
3.7 FEree ENEIEY s osion cnamosassaiis smims swssains iosas s
3.8 Rubber Balloon with the Mooney-Rivlin Equation ..........
3.9 Surface Tension .............oiinieniiinnn,
3.10 Cylindrical Balloon . ....... ... ... .. ... ..
3.11 Treloar’s Biaxial Experiment . ............................

Biaxial Stretching of a Rubber Membrane — A Paradigm
of Stability, Symmetry-Breaking, and Hysteresis..........
4.1 Load-Deformation Relations

of a Biaxially Loaded Mooney-Rivlin Membrane . ...........
4.2 Deformation of a Square Membrane

Under Symmetric Loading . ..............................
4.3 Stability Criteria . .......... i
4.4 Minimal Free Energy ........ ... ... i
4.5 Free Enthalpy, Gibbs Free Energy ........................



VI

Contents

4.6 Symmetry Breaking: .o« ssisssusus sasewvma swamg vmswsrms 41
4.7 Hysteresis ... .. ...ttt 43
4.8 Non-monotone Force-Stretch Relation ..................... 44
4.9 Hysteresis and Breakthrough. Dissipation.................. 46
4.10 A Three-Dimensional View .......... .. ... .. ... ... ...... 47
4.11 Comparison with Treloar’s Dead Loading Experiment ....... 48
4.12 Experimental Evidence for Bifurcation .................... 50
Stability of a Single Balloon .............................. 51
5.1 Pressure-Radius Characteristic

and Filling-Radius Characteristic .. ....................... 51
5.2 Pressure-Filling Curve ......... .. ... .. ... 52
5.3 Free Energy-Radius Relation of the Balloon................ 52
5.4 Stability and Non-monotonicity ............. ... ... ... ..., 53
5.5 Suggestive Stability Criterion ................. ...t 57
5.6 A Hydrostatic Device for Controlling the Inflation

of 8 Balloom :sic swsws cozonsms sasms smsms vws ssme i ms smse 61
Stepwise Inflation of a Balloon............................ 63
6.1 Stages of One Stroke of Inflation ......................... 63
6.2 Partial Equilibria....... ... ... .. 64
6.3 Stepwise Inflation for a Stiff Spring ......... ... ... ... ... 66
6.4 Stepwise Inflation for a Soft Spring ....................... 66
6:5 DISSIPALION 5is cavws smsms sws smsms sms v s smosssme smsms sussus 67
6.6 Minima of Available Free Energy ......................... 67
Two Balloons — Revisited . ......... ... ... .. . .. ... ... 69
7.1 Equilibria in the (ri,rp)-Diagram ......................... 69
7.2 Investigation of Stability ............ ... ... .. ... .. ... 71
7.3 Emergy Landscape .. ... ... ...t 73
7.4 Simultaneous Inflation-Deflation Experiment. Hysteresis . . . .. 76

Many Balloons — The Emergence

of a Pseudoelastic Hysteresis ................. ... ........ 79
8.1 Simultaneous Inflation of Four Balloons ................... 79
8.2 Ten Balloons. .. ... 80
83 Many Balloons .......... ... . . 83
8.4 Phase Transition and Pseudoelasticity..................... 84
Stability of the Spherical Shape........................... 87
9.1 Rotational But Not Spherical Symmetry?.................. 87
9.2 A Modicum of Surface Geometry ......................... 87
9.3 Balanceof Forces. ....... ..ot 89
9.4 Motion, Stretches, Surface Stress, and Pressure............. 90

9.5 Equilibrium Conditions ................ ..., 91



Contents VII

9.6 Testing Stability of the Spherical Solution ................. 92
0.7 DISCUSSION 5 55 5555 siviie smemasms 38656 5505 g0s sasiay smeis 95
10 Stress-Induced Crystallization of Rubber ............... .. 97
10.1 Phenomenon . .. ....vuunutn it 97
10.2 The “Mechanism” of Crystallization ...................... 98
10.3 Free Energy of Crystallizing Rubber ...................... 100
10.4 Hysteresis and Residual Stretch ........ ... ... ... ... ...... 102
11 History of Rubber and Its Use............................ 105
References . .. ... ...t 111
Chapter 1 (Young-Laplace Equation) .......................... 111
Chapter 2 (Kinetic Theory of Rubber) ........... ... ... .... 112
Chapter 3 (Non-linear Elasticity) ........... ... ... . ... .. ... 114
Chapter 4 (Plane Square Membrane) .............c.ocoounnnnn... 115
Chapter 5 Through 8 (One, Two, and Many Balloons) ........... 116
Chapter 9 (Stability of the Spherical Shape).................... 118
Chapter 10 (Crystallization and Limited Extensibility)........... 119
Chapter 11 (HiStOTY) . ..ottt e 120



1 Stability of Two Rubber Balloons

Rubber balloons, that usually adorn children’s parties, can also enchant the
scientist. Indeed, there is much more than fun and games to be had with
balloons; they form a suitable subject for mathematical studies and an inter-
esting paradigm of methods of modeling in physics and chemistry.

First of all, balloons consist of rubber, a remarkably unique elastic ma-
terial with an extreme extensibility — superior to that of all other solids —
and perfectly resilient. In a sense to be explained later the closest relatives of
rubber amongst natural materials are the ideal gases, like air. Both, rubber
and gas, are the only examples of entropic materials.

In order to catch the reader’s attention and raise his curiosity for the rich
properties of rubber and rubber balloons, we perform the experiment shown
in Fig.1.1. Two balloons inflated to the same size are fixed to the ends of a
connecting pipe, cf. Fig. 1.1;,,. However, that situation proves to be unstable
when the tap is opened; air flows from one balloon to the other one until
the stable equilibrium is reached, which is demonstrated in the bottom part
of Fig. 1.1, where one balloon is small and the other one is large. The initial
symmetry of the arrangement has been broken spontaneously.

From this we must not, however, conclude that a small balloon always
inflates the large one with which it can exchange air. The stability depends
on the amount of filling and the process shown in Fig. 1.1 will only occur
for intermediate fillings. Indeed, with either more air or less air in the two
balloons, the larger one inflates the smaller one until a symmetric equilibrium
situation is attained and both are equal in size, see Figs.1.2 and 1.3. We
shall study that phenomenon in due time and understand it completely as a
question of stability.

The early research relevant to balloons does not concern balloons at all
but droplets, bubbles and, in particular, soap bubbles. Rubber balloons were
unknown before the 1820’s, when Michael Faraday glued one together — or
so they say. To be sure balloons are different from bubbles but there is some
similarity; certainly both enclose air in a spherical membrane. Therefore it
is somewhat pertinent to balloon-research that, 200 years ago, Young and
Laplace related the pressure difference [p] = p — pg between the inside and
the outside of a soap bubble to the radius 7. Their result is now known as
the Young-Laplace formula and it reads

I. Miiller and P. Strehlow: Rubber and Rubber Balloons, Paradigms of Thermodynamics,
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2 1 Stability of Two Rubber Balloons

Fig. 1.1. Symmetry breaking. The initial equilibrium is unstable. Top: Tap closed.
Bottom: Tap open

Fig. 1.2. Large filling: An initially asymmetric situation (top) becomes a symmetric
equilibrium upon opening the tap

w = 2. (1.1)

The coefficient o is called surface energy or also surface tension.!

In later times, when the close relation between work and energy became
common knowledge, the equation (1.1) was derived as follows: For an increase
dr of the bubble radius, the surfaces — inner and outer surface — increase

! For literature and literary references we refer the reader to Chap. 12.
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Fig. 1.3. Small filling: Same process as in Fig. 1.2: A symmetric equilibrium sit-
uation will evolve from an asymmetric situation when the balloons can exchange
air

by dA = 2 - 8rrdr. That expansion of surface requires a certain amount of
work which we assume to be proportional to dA. Let us say that the work is
equal to 0dA, where o is a factor of proportionality, possibly dependent on
the extant r. The work is done by the pressure difference [p] which inflates
the volume V = 4%r® by dV = 47r?dr so that the work equals [p]dV. Thus
we have

[p]dV = odA, and hence [p] = —. (1.2)

So what about stability? Let us concentrate on Fig. 1.2p5¢¢0m and test the
stability of that situation in which p is equal in both ballons. In a thought
experiment we squeeze the right balloon (say), thereby decreasing its radius
and making air move to the left balloon, which will therefore grow. If in that
process the pressure in the squeezed balloon decreases and the pressure in the
inflated one increases, the air will move back as soon as the squeezing stops;
the initial situation will be reestablished and therefore it is a stable situation.
Thus stability requires that %l > 0 holds. If %’T—’l were smaller than zero, the
imposed shift would not heal itself, but become worse and thus expose the
initial state as unstable.

Actually, the thought experiment does not require an active experimenter
to do the squeezing. Indeed, even if the balloons are initially exactly alike,
the inevitable thermal fluctuations of pressure will be enough to test their
stability.

The unstable situation can remind us of the predicament of Buridan’s
ass who should starve — according to the scholastic philosopher — in the
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middle of two equal bales of hay. Of course it does not starve, because the
tiniest fluctuation of its head will make one or the other bale more attractive
spontaneously.

By (1.1) the stability condition %’7%1 > 0 may be written in the form
d
~22+25250, hence — >Z. (1.3)
rdr dr = r

A stability argument like this was first given by Gibbs and it implies that o
must depend on 7, since the experiments of Figs. 1.2 and 1.3 have shown that
there are stable equilibria between balloons of equal size. To be sure we do
not expect the inequality (1.3) to hold for all values of 7, since we have seen
in Fig. 1.1 that two balloons with equal pressures and equal radii may also
be unstable.

The question is how the surface tension ¢ depends on r, and that question
will be answered in the next two chapters which deal with the Kinetic Theory
of Rubber (Chap. 2) and with Non-linear Elasticity (Chap. 3). Those two the-
ories are masterpieces of materials’ science in their own right, far outreaching
their applicability to rubber balloons. Therefore, in presenting these theories,
we do a little more than we must for the purpose of explaining balloons; we
thus hope to be able to share some exciting results of thermodynamics, sta-
tistical mechanics and continuum mechanics with the reader.

Of course, we need not rely upon theory; there is always experiment and,
indeed, it is quite easy to measure the pressure difference [p] across the bal-
loon membrane as a function of its radius r. Figure 1.4;.f; shows a suitable
manometer: We attach a fully inflated balloon to its inlet and let the air drain
out slowly through a small opening in the connecting pipe. We monitor the

40+ [p] (mbar)
s

30+
25
201
15;

%Y 10+

0 T T T T T Ir/ro
0o 1 2 3 4 5 6 7

Fig. 1.4. Left: A manometer to measure the graph [p] vs. . Right: The pressure-
radius characteristic of the balloon
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size of the balloon, and the pressure indicated by the pointer on the manome-
ter scale. Thus we obtain a graph [p] versus +, where rg is the radius of the
non-inflated balloon. Such a graph is shown in Fig. 1.4,;¢p+.

Inspection of Fig. 1.4 shows that there are two ascending branches of the
pressure-radius characteristic of the balloon, one for large radii the other
for small ones. On those branches we expect stable equilibria for intercon-
nected balloons of the same size according to the above-described thought
experiment. And indeed, in Figs. 1.2 and 1.3 we have seen stable equilibria
establish themselves between two large balloons and two small ones. By the
same token the initially unstable situation of Fig.1.1 occurs in balloons of
intermediate size and we must conclude that their radii correspond to the
descending branch on the characteristic of Fig. 1.4.

The reader who is interested in balloons only — and not in rubber as such
— should take a good look at the pressure-radius graph of Fig. 1.4,,45; and at
(3.24) which represents that graph analytically. He is then prepared to study
the Chaps. 5 through 8 which are the ones that deal with balloons.






2 Kinetic Theory of Rubber

2.1 Rubber Elasticity is “Entropy Induced”

We start by considering an elastic bar of any solid material, be it steel, alu-
minium, wood — or rubber. The bar is fixed to the bottom at one end and a
tensile load Py is applied to the other end slowly, or as we say, quasistatically.
This means that the deformation of the bar caused by the tensile load Py is
homogeneous and that the load itself is always equilibrated by the retractive
elastic force Py of the bar. Accelerations are negligible and so is the kinetic
energy of the bar and the dissipation, or entropy production. The undis-
torted length of the bar is L} and the deformed length under the load P\
— or Py — is Ly, see Fig.2.1. The temperature is equal to T' everywhere in
the bar and at all times.

P,

o s
Fig. 2.1. An elastic bar in the undistorted state (left) and deformed by the load
Py (right)

I. Miiller and P. Strehlow: Rubber and Rubber Balloon, Paradigms of Thermodynamics,
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8 2 Kinetic Theory of Rubber

Under quasistatically applied loads the first and second laws of thermo-
dynamics read

%:Qm -

s @
— == 2.1
dt T (2.1)
U and S are the internal energy and entropy respectively and W is the
working, or power, of the load, i.e.

W= P,\% or here W= 13,\?. (2.2)
Q is the heating needed to maintain the constant temperature 7. Both equa-
tions (2.1) represent somewhat mutilated forms of the laws of thermodynam-
ics. Thus the first law, or energy balance, has no kinetic energy term because
the process is quasistatic. For the same reason the second law, or entropy bal-
ance, is an equality rather than an inequality. Indeed, the entropy production
vanishes in a quasistatic or reversible process.

Later, in Chap.3 we shall have to consider rapid, irreversible processes
and that will force us to give the complete form of the thermodynamic laws.
Also we shall then have to make a distinction between the applied load Py,
and the elastic force Pj.

Elimination of Q and W between (2.1) and (2.2) provides the Gibbs equa-
tion for S

TdS = dU — P\dLy, (2.3)
or, equivalently, for the free energy F =U — T'S
d(U —TS) = —SdT + P\dLy. (2.4)

The elastic force Py and the internal energy U depend on Ly and T
and so does S, by (2.3). The functions Py\(Lx,T) and U(Lyx,T) are called
thermal and caloric equations of state, respectively, and their specific form is
characteristic for a material. The two equations of state are not independent,
because (2.4) implies

_ U 0S oS P, oU 0P
P)\_B—L;—Tm and aL/\——a—T, hence éL_A—PA—T—ﬁ
(2.5)

Equation (2.5), results as an integrability condition for the free energy F', cf.
(2.4), while (2.5); allows us to split the elastic force Py into

e an energetic part ;TU,\ and

e an entropic part —Taali. (2.6)
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ol
ol

A
L= const L
_ 9P,
or
oU = oP .
=P, — L
16L ‘ aT Bl
A T ¢ T

Fig. 2.2. Left: Measured load-temperature graph of a bar of an arbitrary mate-
rial (schematic). Right: Measured load-temperature graphs of rubber for different
constant values of Ly

Thus we recognize that part of the elastic force is due to a change of energy
with length and part is due to a change of entropy.

It is possible to identify the two parts of Py — the energetic and entropic
ones — for every Ly and T from a simple experiment: For different tempera-
tures, we measure the load Py needed to maintain a fixed length Ly and we
plot PA(L x, T). Let Fig.2.2;.5+ represent such a measured plot for one Lj.
At one point of that curve the slope %};% determines the entropic part of Py
— to within the factor T' — because, by (2.5)9, that slope equals —;9‘—9%. Also,
the ordinate intercept of the tangent in that point determines the energetic
part, because, by (2.5)3, we have % =P, - T%%.

When we perform this experiment for rubber, we obtain straight lines as
those shown in Fig.2.2,;45: and, upon extrapolation of these lines down to
absolute zero temperature, we see that the ordinate intercept is equal to zero.
Accordingly the internal energy U of rubber is independent of Ly, or we may
say that the energy has nothing to do with the elastic force of rubber. That
force is entropy-induced. Indeed, for rubber (2.5); reduces to

_ aS
B = i,
A 0L

(2.7)
Rubber is not the only material with entropy-induced elasticity. Ideal gases
have the same property. Let us consider:
The framework of quasistatic or reversible thermodynamics is equally valid
for any fluid and for the elastic bar in uniaxial tension considered heretofore. In
particular, the first and second laws have the forms (2.1) and the only difference



