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Preface

This volume presents a set of papers accompanying the lectures of the sixth edi-
tion of the International School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2006 was devoted to formal techniques for hardware verification and
covered several aspects of the hardware design process, including hardware de-
sign languages and simulation, property specification formalisms, automatic test
pattern generation, symbolic trajectory evaluation, BDD-based and SAT-based
model checking, decision procedures, refinement, theorem proving, and the ver-
ification of floating point units.

The opening paper by Bombieri, Fummi, and Pravadelli provides a general
view on simulation-based modeling and verification strategies for developing em-
bedded systems. In particular, the paper is focussed on describing state-of-the
art co-simulation approaches and verification strategies based on fault simulation
and assertion checking.

The paper by Drechsler and Fey reviews the basic concepts and algorithms
for the postproduction test of integrated circuits. The then authors present an
advanced SAT-based tool for automatic test pattern generation.

The paper by Claessen and Roorda concentrates on simulation-based model-
checking techniques, which do not need to represent the states of the design,
but only the values that flow through each signal. In particular, the authors
introduce a high-performance simulation-based model-checking technique called
symbolic trajectory evaluation.

The paper by Cabodi and Murciano overviews binary decision diagrams
(BDD) and their application in formal hardware verification. The paper by
Gupta, Ganai, and Wang illustrates instead a promising alternative to BDD-
based symbolic model-checking methods that relies on Boolean satisfiability
(SAT).

The paper by Cimatti and Sebastiani deals with decision procedures for ver-
ification problems that can be represented as satisfiability problems in some
decidable fragments of first-order logic. The authors focus on integration tech-
niques for combining technology for propositional satisfiability and solvers able
to deal with the theory component.

The paper by Manolios addresses theorem-proving systems and shows how
they can be employed to model and verify hardware using refinement. Theorem
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proving is considered also in the closing paper by Harrison, where it is used for
the verification of floating-point algorithms.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for hardware
verification. We wish to thank all the lecturers and all the participants for a
lively and fruitful school. We also wish to thank the entire staff of the University
Residential Center of Bertinoro (Italy) for the organizational and administrative
support.

May 2006 Marco Bernardo and Alessandro Cimatti
SFM 2006 Directors
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Hardware Design and Simulation for Verification

Nicola Bombieri, Franco Fummi, and Graziano Pravadelli

Universita di Verona, Strada le Grazie 15, 37134 Verona, Italy
{pombieri, fummi, pravadelli}@sci.univr.it

Abstract. The development of more and more complex embedded sys-
tems constitutes a very challenging task for EDA experts, due to their
HW /SW-mixed nature joint to the high demand for quality and relia-
bility. Recently, both industrial engineers and academic researchers have
developed a very large number of techniques for dynamic verification in
terms of co-simulation, which, in particular, address the different nature
of hardware and software components of an embedded system. How-
ever, a widely accepted methodology does not exist. Thus, this paper
is intended to provide a general view on simulation-based modeling and
verification strategies for developing embedded systems. In particular,
the paper is focussed on describing state-of-the art co-simulation ap-
proaches and verification strategies based on fault simulation and asser-
tion checking.

1 Introduction

An embedded system can be defined as a computer that is a component in a large
system and that relies on its own microprocessor (1,2]. Thus, it can be viewed as
a mix of cooperating hardware and software parts, which are able to provide a
wider and more adaptable set of complex functionality with respect to ASIC and
ASIP, without requiring the large amount of resources needed by general pur-
pose systems. Examples of embedded systems include controllers for industrial
processes, automotive appliances, medical devices, multimedia portable systems,
data acquisition systems, etc. The main characteristic of embedded systems is
the reactivity: they must continuously react to asynchronous input events. Fur-
thermore, since such systems are particularly suited in real-time contexts, where
tasks must be performed within a given deadline, predictability (determinism)
can become a key issue. In such application domains, the adaptability is required
too. In fact, when determinism is required, it must be preserved also when the
system is operating in a highly non-deterministic environment.

Even if embedded systems historically operate with bounded resources, as
memory and computational power, nowadays they are increasing their resources,
leveraging on the improvements of silicon technology. In fact, technology scaling
always offers new opportunities and new challenges to system designers. Moore’s
law predicts a doubling on systems complexity (expressed as the number of
transistors per integrated circuits) every couple of years. Chips composed of tens
of million of gates, and therefore of more than a hundred million transistors, are

M. Bernardo and A. Cimatti (Eds.): SFM 2006, LNCS 3965, pp. 1-29, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 N. Bombieri, F. Fummi, and G. Pravadelli

today feasible in commercial production lines with a 90 nm technology. Thus,
a system that yesterday was developed as a set of several chips connected on a
printed board, nowadays can be developed in a single chip, composed of several
complex subsystems integrated on the same silicon die. Such a system is known
as System-on-a-Chip (SoC) and it represents a strong paradigm for embedded
systems [3]. Several advantages make this way to develop a system very attractive
for system developers. When the system complexity increases, the number of
pins also tends to increase, so it becomes simpler and cheaper to connect many
subsystems on a single chip than several chips on a printed board. Furthermore,
the on-chip wire capacitances are smaller than their on-board counterparts, and
this implies higher performance and lower energy requirements.

On the other side, developing a single, very complex, SoC poses many chal-
lenges for the developers. First, when the technology scales, designers have to
face new issues, like the short channel effects [4] and the crosstalking problem [5].
Even if such problems are usually faced by foundries, the system developers must
be aware of them, because high-level design choices can have a strong impact on
lower levels of abstraction.

Another issue is represented by the power quest [6]. The energy budget for
embedded systems is usually strictly limited. Those systems are often battery-
based, and the improvements on the battery capacitance cannot keep pace with
the increase on the system complexity. Thus, to obtain a usable system (in terms
of activity time), the designer must take into account the optimization of the
energy consumption. Such an optimization is pressing also for the higher power
density involved in modern integrated circuits. As the gate size reduces and the
power consumption increases, the power density to dissipate strongly increases.
Current high-performance systems, as the state of the art microprocessors, have
already reached very high power densities, and, in the near future, power density
is expected to increase even more. Those levels of power density imply a high
quantity of heat to dissipate and this fact causes an increasing cost of the package
to use. Moreover, the higher temperature of functioning has a direct impact
on the reliability and on the life time of the systems. Therefore, the energy
consumption minimization of a system is nowadays a key issue for the developer,
which has to keep it under control at every stage of the design process.

Also the development time spent is a key factor that must be accurately con-
sidered when an embedded system is designed. The growing complexity of the
development of such systems pushes towards component reuse [2]. Designers are
bound to use use pre-designed subsystems, called Intellectual Property (IP) com-
ponents, as far as possible. Such components can be of several kinds, ranging
from cell libraries over blocks which perform a standard task (e.g., MPEG de-
coder, USB controller, etc.), to very complex components, like processor cores
(ARM, MIPS and other families of microprocessors are commercially available
as pre-designed IP cores). IP components are specified at several levels of ab-
straction, so that they can be used during all steps of the system design flow.
Moreover, they are often customizable and configurable, thus designers can use
them in their own systems, tuning them according to their needs.



Hardware Design and Simulation for Verification 3

The modern approach of design reuse introduces the concept of platform [7]. A
platform is a fully defined interconnection structure and a collection of customiz-
able IP blocks. A developer can start from an available platform and configure it
choosing the parameters for the given IP blocks, adding new hardware devices,
and removing useless IP blocks. A platform is then conceived as a highly reusable
system that a designer can adapt to his own needs and purposes.

The need of taking into account all the previous challenges, and the intrinsic
heterogeneous nature of embedded systems (HW and SW) makes the devel-
opment of such systems a harder task compared with more traditional digital
systems. In particular, the high demands for quality and reliability for embedded
systems have led to complementary quality assurance efforts: hardware engineers
have developed techniques for verification in terms of co-simulation, which, in
particular, addresses the different nature of hardware and software components.
Thus, these techniques are tailored for design and verification flows which com-
prises dedicated models for the hardware and the software parts.

In this context, the paper is intended to provide a review of design and verifi-
cation techniques based on simulation for developing embedded systems. The pa-
per is organized as follows. Section 2 describes a typical embedded system design
flow. Section 3 is devoted to present techniques for simulation and co-simulation.
Section 4 focuses on verification approaches which exploit testbenches and as-
sertions, and the related issues. Section 5 reports some experimental results for
the verification techniques presented in Section 4. Finally, concluding remarks
are summarized in Section 6.

2 Design Modeling

The design of an embedded system is a very challenging task which involves
the cooperation of different experts: system architects, SW developers, HW de-
signers, verification engineers, etc. Each of them operates on different views of
the system starting from a very abstract informal specification and refining the
model through the abstraction layers reported. At every level of abstraction, a
model of an embedded system can be viewed as a black box that processes the
information received at its inputs to produce corresponding outputs. This I/O
mapping defines the behavior of the system.

Figure 1 represents the classical design modeling flow where system level
is refined by applying the new transactional level modeling (TLM) style [8]. A
TLM-based design flow starts from an abstract system description and it evolves
toward more detailed implementations till it gets to RTL. In particular, verifi-
cation activity involves three main phases: first, the design implemented at the
higher abstraction level is validated considering the system functionality; then,
once the design is optimized following architecture exploration and performance
analysis, it is validated taking into account the temporal behavior. Finally, when-
ever a step of the refinement flow implies a change in the system design, a further
verification check is required in order to preserve the golden model functionality
ascertained at the preceding step.
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Fig. 1. Embedded system design flow

In spite of its name, transaction-level does not denote a single level of de-
scription; rather, it refers to a group of abstraction levels, each varying in the
degree of functional or temporal details used and expressed.

A common agreement on terminology for TLM levels is still missing so far.
Different interpretations (and terminology for the same concepts) have been
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Level

Use

Features

TL3

Executable specifications and first level of
functional partitioning of data and control.

System proof of concepts.

> Implementation architecture-abstract.

> Untimed functionalities modeling.

> Event-driven simulation semantics.

> Point-to-point Initiator-Target connection.
» Abstract data types.

development.

Modeling CA interfaces for abstract
simulation models of IP blocks such as
embedded processors.

TL2 | Hardware architectural performance and | » Mapping ideal architecture into resource-constrained world.
detailed behavior analysis. » Memory/Register map accurate.
HWISW partitioning and co-development. | 3 Event driven simulation with time estimation.
Cycle performance estimation. > Bit-width and transfer-size constrained data types to allow mapping
to bus bursts or fragments of bursts.
> Split, pipelined with time delays.
TL1 | Detailed analysis and low level SW | » Clock-accurate protocols mapped to the chosen HW interfaces and

bus structure.
» Interface pin are hidden.

> Byte-accurate data Transactions have internal structure (protocols,
data, clock).

ot

CA performance simulation. > Transactions map directly to bus cycles.

> Parametizable to model different bus protocol and signal interfaces.

Fig. 2. TLM levels use and features

proposed by both industry and academia [8,9, 10, 11]. However, factoring out
common elements, key concepts are:

1. To implement a system at higher level means to implement the system in a
more abstract way, that is to leave implementation details in order (mainly)
to speed-up simulation for functional verification purposes.

2. To implement a system at lower level means to add implementation details
to the system in order to simulate it in a more accurate way (for performance
analysis purpose).

Hence, taking OCP-IP definition as reference, main use and features of every
TLM level (e.g., TL3, TL2, and TL1) are summarized in Figure 2.

SystemC, as a broad-range level of abstraction modeling language, well ad-
dresses TLM. However, lack of established standards and methodologies means
that each organization adopting TLM has to invent its own usage methodolo-
gies and API’s. In addition to this redundant cost, these methodologies eas-
ily differ, making IP exchange and reuse more difficult. In this context, OSCI
TLM library [12] based on SystemC represents a valuable set of templates
and implementation rules aiming at establishing a reference for TLM API’s
implementation.

A typical TLM-based SoC design flow consists of the following steps.

— System modeling (TL3). Informal specification and system constraints
are analyzed to provide a system level model of the design. At this level,
there is no distinction between the HW components and the embedded
SW. Indeed, the embedded system is considered as an interconnection of
independent functional blocks which communicate by using blocks of words
(messages) or shared memory. Implementation details like communication
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protocols, delay analysis, computation algorithms, etc. are not taken into
consideration. The most important issues of system modeling are represented
by efficiency (i.e., the model must be quickly developable), flezibility (i.e.,
the model must be easily adaptable to explore different design implemen-
tations), and functionality (i.e., the behavior of the system must reflect the
informal specification and it must satisfy the system constraints). Finite state
machines (FSMs) [13], Labeled Transition Systems [14], Kripke structures
[15], Petri nets [16,17], process networks [18], etc. are valuable alternatives
to formally model the functionality of embedded systems at such a level.
The adoption of such semantic models makes the system level a good tar-
get for formal verification issues. However, to evaluate different architectural
alternatives and to carry out performance analysis, semantic models are typ-
ically translated into simulatable descriptions. In this context, SystemC [19]
is a very suitable language for system level modeling!: it joins the flexibility
of C++ and the standard features of the traditional hardware description
languages (HDLs), like VHDL [20], Verilog [21], etc.

— HW/SW partitioning and architecture mapping (TL2, TL1). The

system level description is then mapped onto an architecture to obtain a
transactional level model. This requires to decide which tasks will be im-
plemented by SW and which ones by HW. The partitioning is actually a
critical design choice, since there is no unique way to decide which task
must be mapped into HW and which ones into SW. Moreover, some deci-
sions about the configuration of the final system must be taken. In particular,
the designers must select the following components:

e the programmable device where the SW will run;

e the memory model;

the HW/SW communication architecture and the bus typology;

e the HW technology (ASIC, FPGA, etc.) where HW tasks will be mapped.

HW/SW partitioning and architecture mapping provides a transactional
level model where the communication is completely separated from compu-
tation. The focus is on the data rather than on the way transfer is executed.
At this level, simulation is used intensively for evaluating different archi-
tectures. Thus, the transactional model aims at minimizing the amount of
events and the information processed during simulation in order to reduce
the verification time. SystemC represents an attractive alternative also at
the transactional level, since it allows one to describe very accurately both
SW and HW components. In this way, HW/SW partitioning is simplified,
because functional tasks can be moved from SW to HW and viceversa with-
out the need of code translations, which are required when two different
languages are used to model SW and HW components.

SystemC is a C++ class library which can be used to define methodologies to effec-

tively model software algorithms, hardware architectures, and HW/SW interfaces.
The class library includes a simulation engine (the SystemC kernel) that can be
linked with the user descriptions. This allows us to obtain a single executable which
exhibits the behavior of the modeled system.
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— SW coding. After partitioning, SW and HW parts follow a different design
flow. In particular, SW tasks are implemented by using a programming lan-
guage (C/C++ represents an immediate solution when SystemC is adopted
at system and transactional levels), and typical SW engineering techniques
are used to optimize the resulting code. At this level, SW developers consider
the HW part as a black box which communicates with SW via device drivers.
Thus, SW coding must take into account constraints depending on the pro-
grammable device selected during the architecture mapping, and constraints
depending on the communication interface.

— SW compilation. After the coding, the SW is compiled to object code. The
compilation process generally depends on a Real Time Operating System
(RTOS) which is selected to take care of load distribution, task scheduling,
and communication with the HW interface. However, in some cases, RTOS
may be absent, and the SW directly interacts with the device driver.

— Interface definition. Splitting the design tasks in HW components and
pieces of SW introduces the need for an interface between the two parts
that, often, is not specified in the initial requirements. This interface has to
translate the timing information from the SW to the HW, and viceversa,
because HW and SW rely on very different timing models. The HW model
is typically event driven, while the SW model is cycle based, assuming it
is executed by a programmable device. For this reason, the design of the
interface between SW and HW parts is one of the most challenging task in the
embedded system design flow. It requires to implement the device drivers for
the programmable devices where the SW runs, and the communication bus
to connect HW components, memory and programmable devices. The device
drivers represent the interface between the RTOS and the HW components.
Its purpose consists of hiding the HW to the SW layers by providing a set of
functions to control the operation of the peripheral devices. Complementary,
the purpose of the bus consists of defining the communication protocol taking
into account many parameters like cost, bandwidth, reliability, etc..

— HDL modeling and HW partitioning. The HW model generated at the
transactional level must be refined and optimized by executing different syn-
thesis steps to obtain a gate-level description. Historically, the highest level
of abstraction for HW components is represented by the behavioral level. The
HW model is implemented by using an HDL focussing on the logic function
of the HW components and ignoring implementation details. Moreover, the
HW model is possibly partitioned into various interacting modules that bet-
ter characterize the different HW units. Some books dealing with Electronic
Design Automation (EDA) [22] make a more accurate classification and re-
fer to this level as the functional level, while a behavioral level model is
intended as a functional representation of the design coupled with a descrip-
tion of the associated timing relations. Any of these two abstraction levels
keeps the complexity of digital system models quite low, allowing their rapid
simulation.

— Behavioral synthesis and IP reuse. The functional /behavioral model of
each HW component is further refined into a Register Transfer Level (RTL)



8 N. Bombieri, F. Fummi, and G. Pravadelli

model by means of behavioral synthesis. The functionality of the design is
decomposed and represented by a structural connection of combinational and
sequential components (generally described as finite state machines with dat-
apath (FSMD) [23]). At this level, IP reuse is performed too. Thus, already
existing components are connected with new ones to provide the final RTL
model. IP reuse sensibly decreases the time-to-market and it allows designers
to concentrate the effort in implementing the very critical functionality of
the system.

— Logic Synthesis. Finally, logic synthesis is used to translate the RTL model
to a gate-level model, where the design is mapped into a structural view of
primitive components (AND, OR, flip-flop, etc.) from which the physical
mask can be easily generated to physically produce the circuit.

A verification/testing phase is mandatory after each step of the embedded
system design flow to avoid the propagation of errors between the different ab-
straction levels. Indeed, synthesis is a dangerous process since it may introduce
further bugs. This can be due to different causes: incorrect use of synthesis tools,
incorrect code writing style that may prevent the synthesis tool to adequately
infer the required logic, bugs of the synthesis tool, etc..

Thus, most of the publications focusing on the field of EDA start claiming the
importance of verification [24] and testing [22] for shipping successful embedded
systems. While the purpose of testing is to verify that the design was manufac-
tured correctly, verification aims at ensuring that the design meets its functional
intent before manufacturing. In particular, functional verification of embedded
systems is the process of ensuring that the logical design of the system satisfies
the architectural specification by detecting and removing every possible design
error. As digital systems become more complex with each generation, verifying
that the behavior is correct has become a very challenging task. Between 60%
and 80% of the design group effort is now dedicated to verification [24]. The
trend is particularly crucial for embedded systems, which are composed of a
heterogeneous mix of hardware and software modules, and where the presence
of design errors in the early phases of the design flow may lead to a complete
failure of time-to-market fulfillment. In this context, both formal verification
and simulation-based verification represent effective solutions to remove design
€errors.

There exist formal verification approaches to deal with the analysis and check
of each of the grey products in Fig. 1. On the contrary, since one needs executable
specifications to do simulation, simulation-based verification plays a predomi-
nant role in the later stages of the design process, i.e. once a design is already
available, while formal verification must do most of the work at the border with
the higher levels of abstraction. Typical abstraction-bridging verification tasks
include checking a system level design vs. constraints or abstract specifications,
checking the behavioral level design vs. partial models, checking component de-
sign vs. behavioral properties. Of course, the different approaches cover different
aspects, thus they belong to different communities of scientists (like requirement
engineering at the specification level, code analysis around a compilation task,



