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INTRODUCTION

The theory of matrices had its origin in the theory
of determinants, and the latter had its origin in the
theory of systems of equations. From Vandermonde and
Laplace to Cayley, determinants were cultivated in a
purely formal manner. The early algebraists never suc-
cessfully explained what a determinant was, and indeed
they were not interested in exact definitions.

It was Cayley who secms first to have noticed that
“the idea of matrix precedes that of determinant.” More
explicitly, we can say that the relation of determinant
to matrix is that of the absolute value of a complex
number to the complex number itself, and it is no more
possible to define determinant without the previous con-
cept of matrix or its equivalent than it is to have the
feline grin without the Cheshire cat.

In fact, the importance of the concept of determinant
has been, and currently is, vastly over-estimated. Sys-
tems of equations can be solved as easily and neatly
without determinants as with, as is illustrated in Chap-
ter I of this Monograph. In fact, perhaps ninety per cent
of matric theory can be developed without mentioning
a determinant. The concept is necessary in some places,
however, and is very useful in many others, so one
should not push this point too far.

In the middle of the last century matrices were ap-
proached from several different points of view. The
paper of Hamilton (1853) on “Linear and vector func-
tions” is considered by Wedderburn to contain the be-
ginnings of the theory. After developing some properties
of “linear transformations” in earlier papers, Cayley
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vi INTRODUCTION

finally wrote “A Memoir on the Theory of Matrices” in
1858 in which a matrix is considered as a single mathe-
matical quantity. This paper gives Cayley considerable
claim to the honor of introducing the modern concept
of matrix, although the name is due to Sylvester (1850).

In 1867 there appeared the beautiful paper of La-
guerre entitled “Sur le calcul des systémes linéaires” in
which matrices were treated almost in the modern man-
ner. It attracted little attention at the time of its
publication. Frobenius, in his fundamental paper “Ueber
lineare Substitutionen und bilineare Formen” of 1878,
approached matric theory through the composition of
quadratic forms.

In fact, Hamilton; Cayley, Laguerre and Frobenius
seem to have worked without the knowledge of each
others’ results. Frobenius, however, very soon became
aware of these earlier papers and eventually adopted the
term “matrix.”

One of the central problems in matric theory is that
of similarity. This problem was first solved for the com-
plex field by means of the elementary divisor theory of
Weierstrass and for other rings by H. J. S. Smith and
Frobenius.

In the present century a number of writers have
made direct attacks upon the problem of the rational
reduction of a matrix by means of similarity transfor-
mations. S. Lattés in 1914 and G. Kowalewski in 1916
were among the pioneers, Kowalewski stating that his
inspiration came from Sophus.Lie. Since that time many
versions of the rational reduction have been published
by Dickson, Turnbull and Aitken, van der Waerden,
Menge, Wedderburn, Ingraham, and Schreier and Sper-
ner.

The history of these rational reductions has been
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interesting and not without precedent in the field of
mathematical rescarch. The carly reductions were short,
requiring only a few pages. It is not prudent to say that
any of the early papers is incorrect, for certainly a cor-
rect result was obtained in each case, but some of them
contained arguments which were convincing only to
their authors. The exposition in places was certainly too
brief. Later writers subjected these difficult passages to
closer scrutiny, as well as to the fierce fire of generaliza-
tion, with the result that an adequate treatment was
found to take many pages. The book of Schreier and
Sperner, to which the present writer acknowledges in-
debtedness, contains 133 pages.

A large part of the profit which has come from this
mathematical Odyssey has been the by-products. In at-
tempting to justify certain steps in the proof, basic
theorems on vectors and matrices were uncovered,
theorems which had not previously come to notice. Of
this origin are the theorems on the polynomial factors
of the rank equation of a matrix—facts which should
have been known long ago but which for some peculiar
reason escaped discovery.

The present book is an attempt to set forth the new
technique in matric theory which the writers on the ra-
tional reduction have developed. The long proofs have
been broken down into simpler components, and these
components have been proved as preliminary theorems
in as great generality as appeared possible. With the
background developed in the first five chapters, the ra-
tional reduction of Chapter VI does not seem difficult
or unnatural.

That the vector technique will have other applica-
tions in matric theory than to the problem which
brought it forth is quite certain. The Weyr theory for a
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general field was easily established (§55) once the key
theorem (Corollary 57) was known. The orthogonal re-
duction (Chapter VIII) surrendered without a struggle.

The author wishes to express his appreciation of the
kindness of Professors Richard Brauer, Marguerite
Darkow, Mark Ingraham, and Saunders MacLane, who
have read the manuscript and offered valuable sugges-
tions. While no attempt has been made to credit ideas
to their discoverers, it should not be out of place to state
that the author has been greatly influenced by the work,
much of it unpublished, of his former colleague, Mark
Ingraham.

CyrUs CoLTON MACDUFFEE

HuNTER COLLEGE OF THE CIiTY OF NEW YORK
September 1, 1942
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CHAPTER 1
SYSTEMS OF LINEAR EQUATIONS
1. Graphs. A solution of the equation
2x4+3y—6=0
is a pair of numbers (x,, y1) such that
2%+ 3y1 — 6 = 0.
There are infinitely many such solutions. A solution of
the system of equations
) 204+ 3y —6 =0,
d4x—3y—6=0

is a pair of numbers (x1, ¥1) which is a solution of both
equations. There exists just one such solution, namely
(2,2/3).

If we picture (x, y) as a point on the Cartesian plane,
the infinitely many solutions of the equation

2¢+3y—6=0

are the points of a straight line /;, known as the graph of
the equation. The second equation

4x—3y—6=0

also has a graph I, which is a straight line. The point of
intersection of the two lines, namely (2, 2/3), is the solu-
tion of the system of the two equations.

The point (2, 2/3) is evidently the point of intersec-
tion of the line x =2 with the line y =2/3. Thus the prob-
lem of solving the system of equations (1) is equivalent

3



4 SYSTEMS OF LINEAR EQUATIONS

to the problem of finding the vertical line and the hori-
zontal linc which pass through the intersection point of

their graphs.

Y

(2.2/3)

!
|
!
|
|
|
|
|
|
|
|
|
I
|
|

All methods of solving a system of equations such as
(1) are but variations of one and the same process. Let
k1 and k; be any two numbers not both 0. The equation

ki(2x + 3y — 6) + ky(dx — 3y — 6) = 0,

or

(2) 2k +

-l-kg)x + (3k1 - 3k2)y - 6k1 - 6k2 = O,
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is clearly the equation of a straight line, for the coeffi-
cients of x and y cannot both be 0 unless k; =%, =0. This
line passes through the intersection point of the two
given lines; for if (x1, y1) is this intersection point, it is
true for all values of &, and k; that

k1(2x1 + 3)'1 = 6) + k2(~1x1 — 3)’1 — 6) = k10 + kzo =0.

Now for various choices of %2; and k., the line (2) repre-
sents every line of the plane through (x1, y1). This can be
proved by showing that, if (xs, ¥;) is an arbitrarily
chosen point of the plane different from (x, y1), there is
a choice of ki, k2 not both zero such that (2) passes
through this point. Let ki, k2 be unknown, and set

/el(sz + 3}'2 = ()) + kz(“l.\'g = 3)’2 =r: 6) = 0.

We may choose
kl = 4x2 = 3;\'2 == 6, kg = = 2.1'2 = 3')'2 + 6.

Since (xe, v2) is not on both the given lines, not both %,
and k. will be 0.

As the ratio ki:k, varies, the line (2) turns about the
point (x1, ¥1). The problem of solving the system (1) is
the problem of finding the values of %k, and &, such that
(2) is first vertical, then horizontal.

For (2) to be vertical, it is necessary and sufficient
that the coefficient of y, namely 3k; — 3k,, shall be 0. Let
ky=k:=1. Then (2) becomes

6x + 0y — 12 = 0,

whence x;=2. For (2) to be horizontal, it is necessary
and sufficient that the coefficient of x, namely 2k, +4k,,
shall be 0. Let £, =2, ks= —1. Then

0x 4+ 9y — 6 = 0,
whence y, =2/3.
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2. Equivalence of systems. The principle illustrated
in the above example is of general applicability, but
when more than three unknowns are involved, or when
the coefficient field is not real, the geometric interpre-
tation becomes artificial. Suppose that we have a system
of m equations in # unknowns, .

f1 =an¥+ %+ -+ A x.— 1 =0,
3) fo =anxy+ apxs+ -+ %y —c2 =0,
fm = @mi®1 F Ama¥s + -+ AGunXn — Cm = 07

with coefficients in any field. A solution of the equation
fi=01is a set of numbers (x, x2’, - - -, x,”) such that

ainx{ + aipxs + -+ + auxd — ci = 0.

A solution of the system (3) is a set of numbers which is
a solution of every equation of the system.
Suppose that there is another system of equations

g1, = bz + broxe + ¢ - - 4 b1z — dy = 0,
g2 = borxy 4 bosxe + - - - + bonx, — d 0,

(4)

gr = braxy + broxe + - - -+ bpnxn — di = 0.

The two systems (3) and (4) are called equivalent if
every solution of each is a solution of the other.

The process of solving a system of equations is the
process of finding an equivalent system of simplest pos-
sible form. Thus (3) is equivalent to

x1 = hupr+ Rupe + - - - + hupi + e,
h21P1 + hn?z + -+ hzzi’z + e,

X2

Xn = nlpl + hn2p2 + + hnlpl + €n
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where py, pa, - -+, p1 are parameters which may assume
arbitrary values in the coefficient field.
Let us consider System (3). Let k1, k2, - + -, kw be any

numbers, and form the linear equation
kifi + kaofe + - - -+ kmfm = 0.

Consider the system of equations

fl = 01
fi'—l = 01
(5) k1f1 + szz + -+ kmfm =0,
fi—o] =i 0.
fm = 0.
Clearly every solution of System (3) is a solution of Sys-
tem (5). Conversely, let (xi/, xo/, - - -, x.”) be any solu-

tion of (5). It is evidently a solution of every equation of
(3) except possibly f;=0. But the i-th equation of (5)
reduces to k;f; =0, so if k;70, it is also true that f;=0,
and every solution of (5) is a solution of (3). Hence we
have

THEOREM 1. If in a system of equations (3) the i-th
equation 1is replaced by

klfl+k2f2+"'+kmfm=07 ki¢0l
the new system is equivalent to the given system.

All methods of solving a system of equations, even
the method by determinants, employ the above princi-
ple.
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3. Elementary operations. There are three elemen-
tary operations which can be performed upon the equa-
tions of a system to yield an equivalent system. We
shall call these the elementary operations of Types I,
II and III. They are:

Type I. The interchange of two equations of the sys-
tem.

Type II. The multiplication of an equation of the
system by a number £0.

Type III.* The addition to any equation of the sys-
tem of & times any other equation of the system.

The proof that each of these elementary operations
when applied to a system of equations yields an equiva-
lent system is now immediate. That an operation of
Type I leaves the common solutions unchanged is evi-
dent. Operations of Types II and III are special cases of
the operation of Theorem 1. Furthermore, the operation
of Theorem 1 can be achieved by one operation of Type
IT followed by m —1 operations of Type III. That is, we
first replace f; =0 by k.f; =0 where k;70, then replace
this by kifi+4:fi =0, and so on.

4. Systems of homogeneous equations. Let us now
restrict attention to a system of homogeneous equations
JSi =auxi+ a2+ + amx, =0,
fz = an %1+ @ X+ -+ + 2 %0 = 0,

(6)
fm = @mi%1 + @meX2 + + * + + @Gmn¥a = 0.

* These operations are not independent, for an operation of
Type I can be obtained by a succession of operations of Type III
with £=1 and operations of Type II.
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A system of equations is called triangular if the last
coefficient of fn._; is 0, the last two coefficients of f._»
are 0, - - -, the last m —1 coefficients of f; are 0. If
m >mn, this means that all the coefficients of fi, fs, - - -,
fm—n are 0 or, as we shall say, that these polynomials
vanish.

THEOREM 2. The system (6) of homogeneous equations
1s equivalent to a triangular system.

If some coefficient of x, is not 0, we can by an inter-
change of equations if necessary insure that @¢,.,7%0. By
adding to the first equation —ai1./am. times the last
equation, we can make the new coefficient in the place of
a1, equal to 0. Similarly we can make every coefficient
of x, except an. equal to 0. If at the start every coeffi-
cient of x, was 0, no reduction was required.

Now ignore the last equation. Unless every coeffi-
cient of x,_; (above am, n—1) is 0, we can assume that
am_1, »—17#%0 and as before make every other coefficient
of x,_1 equal to 0. In this way we obtain a system of
equations of triangular form equivalent to (6). If m >n,
the first m —n equations have vanished, each coefficient
having become 0.

In every triangular system the number of non-van-
ishing equations is m <. By filling in with vanishing
equations we may assume that m =n. In this form the
coefficients a1, ag, + + -, @.. are called the dzagonal co-
efficients. 1f the system is triangular, cvery coefficient to
the right of the diagonal coefficients is 0.

THEOREM 3. The system (6) of homogeneous equations
is equivalent to omne of triangular form in which every
diagonal coefficient is either 0 or 1; and if the diagonal co-
efficient in any equation is 0, the equation vanishes.



