LNCS 4620

Transactions on

Aspect-Oriented
Software

Development |

Awais Rashid - Mehmet Aksit
Editors-in-Chief

Awais Rashid Mehmet Aksit (Eds.)

Transactions on
Aspect-Oriented
Software Development I11

@ Springer

Volume Editors

Awais Rashid

Lancaster University

Computing Department
Lancaster LA1 4WA, UK
E-mail: awais@comp.lancs.ac.uk

Mehmet Aksit

University of Twente
Department of Computer Science
Enschede, The Netherlands
E-mail: aksit@ewi.utwente.nl

Library of Congress Control Number: 2007939176

CR Subject Classification (1998): D.2, D.3,1.6, H4, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 1861-3027
ISBN-10 3-540-75161-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75161-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12162321 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan .

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4620

Editorial

Welcome to Volume III of Transactions on Aspect-Oriented Software Development.
Since its launch in 2006 the journal has attracted a steady stream of submissions, both
to its indefinitely open call for papers and to calls pertaining to special issues focusing
on key topics in AOSD. At the time of writing this editorial, the total number of sub-
missions to the journal stands at 78. This is very healthy given that it is only the sec-
ond year of the journal.

The journal aims to maintain the highest standards expected of an archival work in
AOSD while ensuring timely feedback and notification to the authors. Each paper is
handled by an associate editor, appointed by the co-editors-in-chief, who is a special-
ist on the specific topic. We ensure that the associate editor does not have a conflict of
interest relating to the paper assigned to him/her. If the associate editor deems the
paper to be worthy of a review, s/he solicits reviews from at least three reviewers on
the quality of the work. On the basis of these reviews, s/he then makes a recommen-
dation to reject the paper; ask the authors to resubmit the paper with major revisions;
accept the paper with minor revisions or accept it without any further changes. We
aim to notify the authors about the outcome of the reviews within 12 weeks. In a
small number of cases, either unforeseen circumstances or other commitments of
reviewers may lead to some further delay but we are pleased to say that such cases
remain a minority.

In cases where major or minor revisions are recommended, the authors are ex-
pected to address the reviewers’ comments. Papers with major changes are passed on
to the reviewers again for a second review. If, even after the second review, a paper
cannot be accepted as it is or subject to minor changes, then the paper is rejected. This
is to avoid an endless review cycle. The procedure is applied pragmatically in that
where there is a significant difference of opinion amongst the reviewers and, provided
the associate editor recommends so, the authors are given a third and final opportunity
to address the reviewers’ comments.

Each special issue is handled by one of the co-editors-in-chief who works closely
with the guest editors to ensure that the journal’s review process is followed and qual-
ity standards are maintained. Given that aspect-oriented software development is a
young discipline it was decided at the editorial board meeting in March 2006 that the
co-editor-in-chief not handling a special issue should be locked out of the review
process completely. This allows such a co-editor-in-chief to author a paper for the
special issue as normally co-editors-in-chief cannot submit a paper to the journal.

This volume constitutes the first part of the special issue on Early Aspects guest
edited by Jodo Aratjo and Elisa Baniassad. The handling co-editor-in-chief was Meh-
met Aksit. The special issue was very successful in attracting high quality submis-
sions and, as a result, had to be split over two volumes of the journal. The papers in
this volume focus on analysis, visualisation, conflict identification and composition of
Early Aspects. The papers in volume IV focus on mapping of Early Aspects across
the software lifecycle.

VI Editorial

We wish to thank the editorial board for their continued guidance, commitment and
input on the policies of the journal, the choice of special issues as well as associate-
editorship of submitted articles. We also thank the guest editors, Jodo Aradjo and
Elisa Baniassad, for the excellent job they did with the special issue—the proposal
they prepared is now used as a model for all special issue proposals to Transactions
on AOSD. Thanks are also due to the reviewers who volunteered time amidst their
busy schedules to help realize this volume. Most importantly, we wish to thank the
authors who have submitted papers to the journal so far, for their contributions main-
tain the high quality of Transactions on AOSD.

Awais Rashid and Mehmet Aksit
Co-editors-in-chief

Organization

Editorial Board

Mehmet Aksit, University of Twente

Shigeru Chiba, Tokyo Institute of Technology
Siobhén Clarke, Trinity College Dublin

Theo D’Hondt, Vrije Universtiteit Brussel
Robert Filman, Google

Bill Harrison, Trinity College Dublin

Shmuel Katz, Technion-Israel Institute of Technology
Shriram Krishnamurthi, Brown University
Gregor Kiczales, University of British Columbia
Karl Lieberherr, Northeastern University

Mira Mezini, University of Darmstadt

Oege de Moor, University of Oxford

Ana Moreira, New University of Lisbon

Linda Northrop, Software Engineering Institute
Harold Ossher, IBM Research

Awais Rashid, Lancaster University

Douglas Schmidt, Vanderbilt University

List of Reviewers

Jaelson Castro

Paul Clements
Anthony Finkelstein
Jeff Gray

Charles Haley
Stefan Hanenberg
Michael Jackson
Joerg Kienzle

Julio Leite

Carlos Lucena
Oscar Pastor

Pete Sawyer
Dominik Stein

Stan Sutton

Bedir Tekinerdogan
Rob Walker

Jon Whittle

Lecture Notes in Computer Science

Sublibrary 2: Programming and Software Engineering

For information about Vols. 1- 4199
please contact your bookseller or Springer

Vol. 4834: R. Cerqueira, R.H. Campbell (Eds.), Middle-
ware 2007. XIII, 451 pages. 2007.

Vol. 4824: A. Paschke, Y. Biletskiy (Eds.), Advances

in Rule Interchange and Applications. XIII, 243 pages.
2007.

Vol. 4807: Z. Shao (Ed.), Programming Languages and
Systems. XI, 431 pages. 2007.

Vol. 4799: A. Holzinger (Ed.), HCI and Usability for
Medicine and Health Care. XVI, 458 pages. 2007.

Vol. 4789: M. Butler, M.G. Hinchey, M.M. Larrondo-
Petrie (Eds.), Formal Methods and Software Engineer-
ing. VIII, 387 pages. 2007.

Vol.4767: F. Arbab, M. Sirjani (Eds.), International Sym-
posium on Fundamentals of Software Engineering. XIII,
450 pages. 2007.

Vol. 4764: P. Abrahamsson, N. Baddoo, T. Margaria,
R. Messnarz (Eds.), Software Process Improvement. XI,
225 pages. 2007.

Vol. 4762: K.S. Namjoshi, T. Yoneda, T. Higashino, Y.
Okamura (Eds.), Automated Technology for Verification
and Analysis. XIV, 566 pages. 2007.

Vol. 4758: F. Oquendo (Ed.), Software Architecture.
XVI, 340 pages. 2007.

Vol. 4757: F. Cappello, T. Herault, J. Dongarra (Eds.),

Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface. XVI, 396 pages. 2007.

Vol. 4753: E. Duval, R. Klamma, M. Wolpers (Eds.),
Creating New Learning Experiences on a Global Scale.
XII, 518 pages. 2007.

Vol. 4749: B.J. Krimer, K.-J. Lin, P. Narasimhan (Eds.),
Service-Oriented Computing — ICSOC 2007. XIX, 629
pages. 2007.

Vol. 4748: K. Wolter (Ed.), Formal Methods and Stochas-

tic Models for Performance Evaluation. X, 301 pages.
2007.

Vol. 4741: C. Bessiere (Ed.), Principles and Practice of
Constraint Programming — CP 2007. XV, 890 pages.
2007.

Vol. 4735: G. Engels, B. Opdyke. D.C. Schmidt, F. Weil
(Eds.), Model Driven Engineering Languages and Sys-
tems. XV, 698 pages. 2007.

Vol. 4716: B. Meyer, M. Joseph (Eds.), Software Engi-
neering Approaches for Offshore and Outsourced Devel-
opment. X, 201 pages. 2007.

Vol. 4680: F. Saglietti, N. Oster (Eds.), Computer Safety,
Reliability, and Security. XV, 548 pages. 2007.

Vol. 4670: V. Dahl, 1. Niemeli (Eds.), Logic Program-
ming. XII, 470 pages. 2007.

Vol. 4652: D. Georgakopoulos, N. Ritter, B. Benatal-
lah, C. Zirpins, G. Feuerlicht, M. Schoenherr, H.R.
Motahari-Nezhad (Eds.), Service-Oriented Computing
ICSOC 2006. XVI, 201 pages. 2007.

Vol. 4634: H. Riis Nielson, G. Filé (Eds.), Static Analy-
sis. XI, 469 pages. 2007.

Vol. 4620: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development I11. IX, 201
pages. 2007.

Vol. 4615: R. de Lemos, C. Gacek, A. Romanovsky
(Eds.), Architecting Dependable Systems IV. X1V, 435
pages. 2007.

Vol. 4610: B. Xiao, L.T. Yang, J. Ma, C. Muller-
Schloer, Y. Hua (Eds.), Autonomic and Trusted Com-
puting. XVIII, 571 pages. 2007.

Vol. 4609: E. Ernst (Ed.), ECOOP 2007 — Object-
Oriented Programming. XIII, 625 pages. 2007.

Vol. 4608: H.W. Schmidt, I. Crnkovi¢, G.T. Heineman,
J.A. Stafford (Eds.), Component-Based Software Engi-
neering. XII, 283 pages. 2007.

Vol. 4591: J. Davies, J. Gibbons (Eds.), Integrated For-
mal Methods. IX, 660 pages. 2007.

Vol. 4589: J. Miinch, P. Abrahamsson (Eds.), Product-
Focused Software Process Improvement. XII, 414 pages.
2007.

Vol. 4574: J. Derrick, J. Vain (Eds.), Formal Techniques
for Networked and Distributed Systems — FORTE 2007.
XI, 375 pages. 2007.

Vol. 4556: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part III. XXII, 1020
pages. 2007.

Vol. 4555: C. Stephanidis (Ed.), Universal Access in
Human-Computer Interaction, Part I1. XXII, 1066 pages.
2007.

Vol. 4554: C. Stephanidis (Ed.), Universal Acess in Hu-
man Computer Interaction, Part I. XXII, 1054 pages.
2007.

Vol. 4553: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part IV. XXIV, 1225 pages. 2007.

Vol. 4552: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part III. XXI, 1038 pages. 2007.

Vol. 4551: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part 1. XXIII, 1253 pages. 2007.

Vol. 4550: J.A. Jacko (Ed.), Human-Computer Interac-
tion, Part I. XXIII, 1240 pages. 2007.

Vol. 4542: P. Sawyer, B. Paech, P. Heymans (Eds.), Re-

quirements Engineering: Foundation for Software Qual-
ity. IX, 384 pages. 2007.

Vol. 4536: G. Concas, E. Damiani, M. Scotto, G. Succi
(Eds.), Agile Processes in Software Engineering and Ex-
treme Programming. XV, 276 pages. 2007.

Vol. 4530: D.H. Akehurst, R. Vogel, R.F. Paige (Eds.),
Model Driven Architecture - Foundations and Applica-
tions. X, 219 pages. 2007.

Vol. 4523: Y.-H. Lee, H.-N. Kim, J. Kim, Y.W. Park,
L.T. Yang, S.W. Kim (Eds.), Embedded Software and
Systems. XIX, 829 pages. 2007.

Vol. 4498: N. Abdennahder, F. Kordon (Eds.), Reliable
Software Technologies - Ada-Europe 2007. XII, 247
pages. 2007.

Vol. 4486: M. Bernardo, J. Hillston (Eds.), Formal Meth-
ods for Performance Evaluation. VII, 469 pages. 2007.

Vol. 4470: Q. Wang, D. Pfahl, D.M. Raffo (Eds.), Soft-
ware Process Dynamics and Agility. XI, 346 pages. 2007.

Vol. 4468: M.M. Bonsangue, E.B. Johnsen (Eds.), For-
mal Methods for Open Object-Based Distributed Sys-
tems. X, 317 pages. 2007.

Vol. 4467: A.L. Murphy, J. Vitek (Eds.), Coordination
Models and Languages. X, 325 pages. 2007.

Vol. 4454: Y. Gurevich, B. Meyer (Eds.), Tests and
Proofs. IX, 217 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4440: B. Liblit, Cooperative Bug Isolation. XV, 101
pages. 2007.

Vol. 4408: R. Choren, A. Garcia, H. Giese, H.-f. Leung,
C. Lucena, A. Romanovsky (Eds.), Software Engineer-
ing for Multi-Agent Systems V. XII, 233 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol. 4401: N. Guelfi, D. Buchs (Eds.), Rapid Integra-
tion of Software Engineering Techniques. IX, 177 pages.
2007.

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4379: M. Siidholt, C. Consel (Eds.), Object-Oriented
Technology. VIII, 157 pages. 2007.

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4350: M. Clavel, F. Durén, S. Eker, P. Lincoln, N.
Marti-Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework. XXII, 797
pages. 2007.

Vol. 4348: S. Tucker Taft, R.A. Duff, R.L. Brukardt, E.
Plodereder, P. Leroy, Ada 2005 Reference Manual. XXII,
765 pages. 2006.

Vol. 4346: L. Brim, B.R. Haverkort, M. Leucker, J. van
de Pol (Eds.), Formal Methods: Applications and Tech-
nology. X, 363 pages. 2007.

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2007.

Vol. 4336: V.R. Basili, H.D. Rombach, K. Schneider,
B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical
Software Engineering Issues. XVII, 193 pages. 2007.

Vol. 4326: S. Gobel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4323: G. Doherty, A. Blandford (Eds.), Interactive
Systems. XI, 269 pages. 2007.

Vol. 4322: F. Kordon, J. Sztipanovits (Eds.), Reliable
Systems on Unreliable Networked Platforms. XIV, 317
pages. 2007.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

. Vol.4279: N. Kobayashi (Ed.), Programming Languages

and Systems. XI, 423 pages. 2006.

Vol. 4262: K. Havelund, M. Nifez, G. Rosu, B. Wolff
(Eds.), Formal Approaches to Software Testing and Run-
time Verification. VIII, 255 pages. 2006.

Vol. 4260: Z. Liu, J. He (Eds.), Formal Methods and
Software Engineering. XII, 778 pages. 2006.

Vol. 4257: 1. Richardson, P. Runeson, R. Messnarz
(Eds.), Software Process Improvement. XI, 219 pages.
2006.

Vol. 4242: A. Rashid, M. Aksit (Eds.), Transactions
on Aspect-Oriented Software Development II. IX, 289
pages. 2006.

Vol. 4229: E. Najm, J.-F. Pradat-Peyre, V.V. Donzeau-
Gouge (Eds.), Formal Techniques for Networked and
Distributed Systems - FORTE 2006. X, 486 pages. 2006.

Vol. 4227: W. Nejdl, K. Tochtermann (Eds.), Innovative
Approaches for Learning and Knowledge Sharing. X VII,
721 pages. 2006.

Vol. 4218: S. Graf, W. Zhang (Eds.), Automated Tech-
nology for Verification and Analysis. XIV, 540 pages.
2006.

Vol. 4214: C. Hofmeister, I. Crnkovi¢, R. Reussner
(Eds.), Quality of Software Architectures. X, 215 pages.
2006.

Vol. 4204: F. Benhamou (Ed.), Principles and Practice of
Constraint Programming - CP 2006. XVIII, 774 pages.
2006.

Table of Contents

Guest Editors’ Introduction: Early Aspects—Analysis, Visualization,
Conflicts and. Compositionxiwsmsms ssamesmemsimsmuinismins sa 1
Joao Araujo and Elisa Baniassad

EA-Miner: Towards Automation in Aspect-Oriented Requirements
Engineering s :mswsinwssses o605 @6 553 meis s s s @ smsms snies o6 @esssss 4
Américo Sampaio, Awais Rashid, Ruzanna Chitchyan, and
Paul Rayson

Analysis of Early Aspects in Requirements Goal Models:
A Concept-Driven Approach i 40
Nan Niu and Steve Easterbrook

Analysis of Crosscutting in Early Software Development Phases Based
on, Traceabiliby: o os:mmsns smsme snsme smsmmisns smema s@ams 9 im emsdme0s 73
Klaas van den Berg, José Maria Conejero, and Juan Herndndez

Visualizing Early Aspects with Use Case Maps 105
Gunter Mussbacher, Daniel Amyot, and Michael Weiss

Handling Conflicts in Aspectual Requirements Compositions 144
Isabel Sofia Brito, Filipe Vieira, Ana Moreira, and Rita A. Ribeiro

Weaving Multiple Aspects in Sequence Diagrams..................... 167
Jacques Klein, Franck Fleurey, and Jean-Marc Jézéquel

Author Index 201

Guest Editors’ Introduction: Early Aspects—Analysis,
Visualization, Conflicts and Composition

Jodo Aratjo' and Elisa Baniassad’

! Universidade Nova de Lisboa, Portugal
ja@di. fct.unl.pt
? Chinese University of Hong Kong, China
elisa@cse.cuhk.edu.hk

Early Aspects are aspects found in the early life cycle phases of software development,
including requirements elicitation and analysis, domain analysis and architecture design
activities. Aspects at these stages crosscut the modular units appropriate for their
lifecycle activity; traditional requirements documentation, domain knowledge capture
and architectural artifacts do not afford separate description of early aspects. As such,
early aspects necessitate new modularizations to be effectively captured and maintained.
Without new tools and techniques, early aspects remain tangled and scattered in lifecycle
artifacts, and may lead to development, maintenance and evolution difficulties.

The Early Aspects community has grown significantly since its inception as a
workshop at the first conference on Aspect Oriented Software Development in 2001.
Since then, the workshop series has flourished, becoming a regular feature of several
conferences, and papers presenting and studying new Early Aspects techniques have
been published in many major venues. Early aspects research groups now span the
globe, and bridge industry and academia.

The level of maturity reached by the Early Aspects work prompted us to edit this
special issue on Early Aspects. We believe that this issue will support the cross-
fertilization of ideas between those focused on research throughout all phases of the
software lifecycle, and will help researchers identify new questions in the world of
Early Aspects.

Overview of the Articles and the Evaluation Process: This special issue consists of
eight articles, selected out of ten submissions. Each were evaluated by three reviewers
and revised at least twice over a period of seven months.

The Early Aspects special issue covers three main areas of research, and is split
over two volumes of the journal. This volume presents papers in the areas of Analysis
and Visualization, and Conflicts and Composition. Volume. IV contains papers on
mapping early aspects throughout the lifecycle.

1 Analysis and Visualization

Early aspects research often involves examination of existing, traditionally organized,
artifacts, and refactoring them into an aspect-oriented organization. This process
might encompass identification of aspects in early requirements documents,
examination of the relevance of early aspects in a certain type of artifact, how early

A. Rashid and M. Aksit (Eds.): Transactions on AOSD III, LNCS 4620, pp. 1-3, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Araiijo and E. Baniassad

aspects can be used to better represent certain early lifecycle documents, or how to
more effectively capture aspects for the sake of development activities in the early
lifecycle. Early aspects also require new approaches for formation and visualizing
lifecycle artifacts. For example, new techniques are required for elicitation and
capture of requirements, the maintenance of domain information, and the formation
and presentation of architectural information. In this issue, we present four papers
which span this area, and touch upon its salient research questions.

EA-Miner: Towards Automation in Aspect-Oriented Requirements Engineering
by Américo Sampaio, Awais Rashid, Ruzanna Chitchyan, and Paul Rayson

This paper describes the EA-Miner tool-based approach, which provides automated
support for mining various types of concerns from a variety of early stage
requirements documents and how these concepts can be structured into specific
aspect-oriented requirements models. The automation consists of natural language
processing, to reason about properties of the requirements as well as the utilization of
semantics revealed by the natural language analysis in building the models.

Analysis of Early Aspects in Requirements Goal Models: A Concept-Driven
Approach by Nan Niu and Steve Easterbrook

This paper presents a rigorous approach to conceptual analysis of stakeholder
concerns. The authors use the repertory grid technique to identify terminological
interference between stakeholders’ descriptions of their goals, and formal concept
analysis to uncover conflicts and trade-offs between these goals. The approach is
applied to the goal models, commonly used in requirements analysis.

Analysis of Crosscutting in Early Software Development Phases based on
Traceability by Klaas van den Berg, José Maria Conejero, and Juan Herndndez

This paper proposes a conceptual framework for crosscutting where crosscutting is
defined in terms of trace relations. The definition of crosscutting is formalized using
linear algebra, and represented with matrices and matrix operations. Thus,
crosscutting can be clearly distinguished from scattering and tangling. With this
definition and transitivity of trace relations, crosscutting can be identified and traced
through software development, also in early phases.

Visualizing Early Aspects with Use Case Maps by Gunter Mussbacher, Daniel
Amyot and Michael Weiss

This paper describes how scenario-based aspects can be modelled at the requirements
level unobtrusively and with the same techniques as for non-aspectual systems, with
the help of Use Case Maps. These are a visual scenario notation under standardization
by the International Telecommunication Union. With Use Case Maps, aspects as well
as pointcut expressions are modelled in a visual way which is generally considered
the preferred choice for models of a high level of abstraction.

2 Conflicts and Composition

With Early Aspect separation of concerns comes the need for composition of
concerns. Early aspects composition is present in all early lifecycle phases.

Guest Editors’ Introduction: Early Aspects 3

Mechanisms for weaving early aspects into traditional artifacts are needed. In the
requirements phase, composition means both the recombination of separately
described requirements, and also the consideration of clashes between the semantics
of those requirements. Here we present two papers in this area: one dealing with
weaving aspects in design, and the other presenting an approach for handling conflicts
in aspectual requirements.

Handling Conflicts in Aspectual Requirements Compositions by Isabel Sofia
Brito, Filipe Vieira, Ana Moreira, and Rita A. Ribeiro

This paper discusses the use of Multiple Criteria Decision Making methods to support
aspectual conflict management in the context of Aspect-Oriented Requirements
Engineering. A conflict is detected whenever two or more concerns that contribute
negatively to each other and have the same importance need to be composed together.
The presented solution relies on the use of the obtained concern rankings to handle
unresolved conflicts.

Weaving Multiple Aspects in Models by Jacques Klein, Franck Fleurey, and Jean-
Marc Jézéquel

This paper presents an approach to statically weave behavioral aspects into sequence
diagrams. The weaving process is automated, and takes into account the semantics of
the model used, i.e., the partial order that a SD induces. To enable the weaving of
multiple aspects, a new interpretation for pointcuts to allow join points to match them
more flexibly is proposed.

EA-Miner: Towards Automation in Aspect-Oriented
Requirements Engineering

Américo Sampaio, Awais Rashid, Ruzanna Chitchyan, and Paul Rayson

Computing Department, InfoLab 21, Lancaster University, Lancaster LA1 4WA, UK
{a.sampaio, awais, rouza, paul}@comp.lancs.ac.uk

Abstract. Aspect-oriented requirements engineering (AORE) provides separation
of concerns at the requirements level. In order to cope with concern identification
and structuring into different requirements models, tool support is vital to
effectively reduce the burden of performing various AORE tasks. This paper
describes how the EA-Miner tool-based approach provides automated support for
mining various types of concerns from a variety of early stage requirements
documents and how these concepts can be structured into specific aspect-oriented
requirements models (e.g., viewpoints-based, use-case-based). The key insight for
early-stage requirements automation is the use of natural language processing to
reason about properties of the requirements as well as the utilization of semantics
revealed by the natural language analysis in building the models. Evaluation of
EA-Miner shows promising results concerning time-effectiveness and accuracy of
undertaking AORE activities and building requirements models. Moreover, an
industrial case study conducted at Siemens AG investigated how the tool performs
in a real-world setting by analysing what benefits it brings and challenges it faces
during AORE analysis. The EA-Miner analysis enabled to find concerns that were
considered relevant by a research team at Siemens that is re-implementing the
investigated system with aspect-oriented languages. Moreover, the exposure of
the tool to industrial requirements written by different developers also revealed
some challenges imposed by the structure of the documentation and the different
use of vocabulary terms hence providing new paths to explore and improve the
tool in the future such as better pre-processing support, “domain synonym”
identification and detection of poorly written requirements.

1 Introduction

Requirements engineering (RE) is considered to be a fundamental part of the software
engineering lifecycle [1-3] as poor requirements can have a significant impact in later
stages of the life cycle and can often be a critical factor in the failure of a project.

One of the initial tasks in RE is gathering the requirements from the end users,
managers, and other stakeholders. This is a challenging task since requirements
engineers and stakeholders normally have different backgrounds and knowledge
about the system under investigation that complicates their communication and
understanding of the system goals and uses. Generally, during this process, the
requirements engineer somehow records these requirements (e.g., creating a report,
generating interview transcripts) to use them later for creating a more detailed
specification of the system.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD III, LNCS 4620, pp. 4-39, 2007.
© Springer-Verlag Berlin Heidelberg 2007

EA-Miner: Towards Automation in Aspect-Oriented Requirements Engineering 5

However, in some real scenarios the requirements engineers do not have the
opportunity to have much contact with the stakeholders, for example, in mass market
application development (e.g., web and off-the-shelf software) [4] where the number
and diversity of users can be extremely high. In these cases the requirements
engineers have to elicit the requirements based on previous knowledge about the
domain or based on available documentation such as marketing studies, legacy
specifications and user manuals.

In both cases the goal of the requirements engineers is to make a transition from
understanding the “problem world” and creating a requirements specification that
represents the system under investigation and that will help developers to build the
system in the “solution world” [2, 5]. During this transition process several documents
with various structures (e.g., interview transcripts, user manuals, marketing analysis and
legacy specifications) can be used to inform the requirements engineer.

Generally this transition process is done manually which can be very time-
consuming depending on the size and complexity of the system. For example,
consider that the input to the requirements specification and analysis task is a 60 page
contract document and a 50 page legacy user manual. Given that the standard average
rate of reading is between 250 and 350 words per minute, it is not difficult to realize
that reading all the information and transforming it into a more structured RE model
demands a huge effort. Therefore, in order to reduce this effort, it is vital to provide
automated support.

As most documents used in RE are written in natural language, some researchers
[6-14] have found promising results in automating RE tasks by building tools that
apply natural language processing (NLP) techniques with requirements-related
documents as input in order to automatically identify concepts and build RE models.
Applying NLP in requirements interpretation is also challenging as natural language
is not as precise as design and implementation languages containing lots of
ambiguities and complex semantics.

Regarding structuring of requirements, recently, some researchers [15-19] have
proposed the adoption of aspect-oriented requirements engineering (AORE) as an
effective approach to achieve separation of concerns. AORE is based on the
observation that, similar to what was evidenced by the AOP community, requirements
artifacts can contain tangling and scattering that need special treatment. This
treatment is provided by adapting current RE approaches with new abstractions
(called early aspects) that modularize crosscutting concerns at RE level, thus bringing
the following benefits [15-19]:

Facilitate detection of conflicts between broadly-scoped requirements;

e Simplify analysis of interactions between early aspects (e.g., the impact that
security can have on response time);

e Facilitate mapping to later stages (e.g., architecture, design and code) thus
providing homogeneity in an aspect-oriented development process.

Even though separation of crosscutting concerns provides benefits, building an
AORE specification with existing AORE approaches suffers from the same problems
as for classical RE techniques mentioned above. In the case of AORE it is even more
challenging since the identification and structuring of requirements level aspects, base
abstractions and crosscutting relationships is harder due to these concepts being

6 A. Sampaio et al.

scattered and tangled across the documents. Moreover, the fact that AORE is a novel
approach complicates the analysis since many system analysts do not have good
understanding of early aspects.

This is where the EA-Miner tool-based approach comes into play by offering
automated support for identifying the abstractions of different AORE techniques (e.g.,
viewpoints [20] based, use case [21] based) and helping to build the models. The
tool’s automated support helps to reduce the time spent to:

o Identify model abstractions: For example concepts such as use cases,
viewpoints, and early aspects that belong to a specific requirements technique
(e.g., Use Case based AORE [22], Viewpoints based AORE [16, 17]) can be
automatically mined from different elicitation documents;

e Structure abstractions into various models: The tool offers features to edit
the identified abstractions (add, remove, filter) as well as to map them into a
chosen model (e.g., a structured AORE specification based on viewpoints or use
cases).

It is important to mention that EA-Miner’s automated support does not replace the
work of the requirements engineer but only helps him/her to save time by focusing on
key information. The key insight for early-stage requirements automation is the use of
natural language processing (NLP) to reason about properties of the requirements as
well as the utilization of semantics revealed by the natural language analysis in
building the models. The use of NLP techniques to help with AORE automation was
initially investigated by our previous work [23, 24] and provided some insights (e.g.,
which NLP techniques could be used for identifying model concepts) that helped us to
reach the current state of the tool’s implementation. After this, we have added several
features on the tool such as synonym and stemming filtering, frequency analysis, and
support for functional crosscutting as well as made several improvements on the
identification mechanisms. Moreover, we have conducted several case studies
including an industrial case study to evaluate the tool.

Most AORE approaches [16-19, 25] do not provide tool support for the
identification of early aspects from requirements documents with the exception of
Theme/Doc [15]. Therefore, EA-Miner offers a key contribution to complement these
approaches by automating the identification task for them. Moreover, our NLP-based
mining analysis and techniques used (Sects. 3,4) offer a higher degree of automation
when compared to other mining approaches (Sect. 7) as the input requested from the
user is minimal.

The remainder of this paper is structured as follows. Section 2 explains how EA-
Miner can be utilized in an AORE process. Section 3 gives an overview of the
utilization of natural language techniques for requirements model automation. Section
4 shows how EA-Miner uses these NLP techniques to automate the identification of
concepts and mapping of models. Section 5 evaluates the tool showing its time-
effectiveness and also presents data regarding the quality of the produced models.
Moreover, an industrial case study shows how the tool can perform in a real-world
setting and what benefits it can bring for the development process such as identifying
relevant concerns that were missed by domain experts. Section 6 provides further
discussion of EA-Miner and its features. Section 7 presents an overview of existing
related work while Sect. 8 concludes the paper.

EA-Miner: Towards Automation in Aspect-Oriented Requirements Engineering 7

2 EA-Miner and the AORE Process

Recently, several researchers have worked on creating new approaches [15, 25, 26] or
adapting contemporary requirements engineering approaches (e.g., viewpoints [3],
scenarios [21], goals [27]) to what have been called AORE approaches such as
Viewpoint-based AORE [16, 17], Scenario-based AORE [18] and goal-based AORE
[19].

The common goal of all these AORE approaches is to provide an appropriate
separation of concerns at the requirements level modularizing crosscutting properties
in early aspects. While some approaches, often categorized as asymmetric, provide a
clear separation of what are the base and crosscutting abstractions (e.g., in [16, 17]
viewpoints are base abstractions while early aspects' are broadly scoped properties,
such as security, availability, response time, that crosscut several viewpoints) other
approaches, categorized as symmetric, give a uniform treatment to the decomposition
units considering everything to be a concern [25].

It is not our intention to get into details of the advantages and disadvantages of
each of the AORE approaches as our goal for EA-Miner is to offer a framework
(tool + guidelines) that can be used with any AORE approach. In Fig. 1 we show a
“general AORE process” which contains a set of activities that are common to most
AORE approaches as described in [16—18].

Requirements EA-MIner ORE
elicitation i Am)ﬂl Other Tools
s (e.g.. ARCADE)

=N
R | N

(1) Eliciting (2) Identification (3) Structuring (4) Validating

Requirements from of vequnrements the requirements
stakeholders and model uir and resolving
Process documents Speclﬁcatmn conflicts

e A | A | A
B oo

o - B

“ Model (2.1) Identification (2.2) Identification (2.3) identification
of viewpoints of early aspects of crosscutting
Tool or relationships

L Guidelines

® - B —18 18

Adaptation for (3.1) Gathering (3.2) Gathering s
Viewpoint-based Viewpoints Early Aspects 0(3'3) i Wy’::‘g“
AORE requirements requirements omposon

Fig. 1. General AORE process with detailed adaptation for viewpoint-based AORE

" Early aspects are also called concerns in this approach.

