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Preface

The title of this book to the contrary not withstanding, there is no more a
“theory” of large deviations than there is a “theory” of partial differential
equations; and what passés for the “theory” is, in reality, little more than
a grab-bag of techniques which have been successfully applied to special
situations and are therefore worth trying in sufficiently closely related set-
tings. Thus, even though the title implies that a master key is contained
herein, the reader will discover that reading this book prepares him to an-
alyze large deviations in the same sense as the manual for his computer
prepared him to write his first program; that is, hardly at all! In spite
of the preceding admission, we have written this book in the belief that
even (and, perhaps, particularly) when a field possesses no “CAUCHY in-
tegral formula,” a useful purpose can be served by a book which surveys.
a few outstanding successes and attempts to codify some of the principles
on which those successes are based. In the present case, the examples of
success are plentiful but the underlying principles are few and somewhat
illusive. We hope that the brief synopsis given below will help the reader
spot and understand these few principles, at least in so far as we have
recognized and understood them ourselves.

After attempting, in Section 1.1, a heuristic explanation of the ideas on
which the theory of large deviations rests, the remainder of Chapter I is
devoted to a detailed account of two basic examples. The first of these,
which is the content of Section 1.2, is CRAMER’s renowned theorem on
the large deviations of the CESARO means of independent R-valued ran-
dom variables from the Law of Large Numbers. In order to emphasize, as
soon as possible, that large deviations can be successfully analyzed even
in an infinite dimensional context, for our second example we have chosen
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viii Large Deviations

ScHILDER’s Theorem for re-scaled WIENER’s measure. The derivation is
carried out in Section 1.3, and applications to first STRASSEN’s Law of the
{terated Logarithm and second to the estimates of VENTCEL and FREI-
DLIN are given in Section 1.4. In connection with the VENTCEL-FREIDLIN
estimates, we have assumed that the reader is familiar with the elements of
ITG’s theory of stochastic differential equations; however, because the rest
of the book relies o1 neither the contents of Section 1.4 nor a knowledge of
ITO’s calculus, readers who are not acquainted with the quirks of stochastic
integration need not (on that account) be too concerned about what lies
ahead.

Armed with the examples from Chapter I, we turn in Chapter II to the
formulation of two of the guiding principles on which the rest of the book
is more or less based. The first of these is contained in Lemma 2.1.4 which
provides a reasonably general statement of the “covariant” nature of large
deviations results under mappings which are sufficiently continuous. (The
treatment given in Section 1.4 of the VENTCEL-FREIDLIN estimates should
be ample evidence of the potential power of this principle.) In order to
formulate the second general principle set forth in this chapter, we start
in Section 2.1 with VARADHAN’s version of the LAPLACE asymptotic for-
mula (cf. Theorem 2.1.10) and combine this in Section 2.2 with a little
elementary convex analysis to arrive at the conclusion (drawn in Theorem
2.2.21) that when large deviations are governed by a convex rate function
then that rate function must be the LEGENDRE transform of the logarith-
mic moment generating function. Since, as we saw in Chapter I, the rate
functions produced in both CRAMER’s and SCHILDER’s Theorems are in
fact LEGENDRE transforms of the corresponding logarithmic moment gen-
erating functions, this observation leads one to guess that there may be
circumstances in which the easiest approach to large deviation results will
consist of two steps: one being an abstract existential proof that the large
deviations are governed by a convex rate function and the second being
the “computation” of a LEGENDRE transform. (Such a procedure is remi-
niscent of the time-honored technique to describe the solution to a partial
differential equation by first invoking some abstract existence principle and
only then trying to actually say something concrete about its properties.)

The contents of Chapters III and IV may be viewed as a sequence of ex-
amples to which the principles developed in Chapter II can be applied. In
Chapter III, all the examples concern partial sums of independent random
variables. After introducing, in Section 3.1, a general argument (cf. The-
orem 3.1.6 and its Corollary 3.1.7) for carrying out an abstract existential
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proof that large deviation results for such sums are governed by convex rate
functions, we return in the rest of the chapter to CRAMER’s Theorem: this
time in its full glory as a statement about random variables taking values
either in a space of probability measures or in a BANACH space. Thus,
Section 3.2 contains a proof of SANOV’s Theorem (cf. Theorem 3.2.17) for
empirical distributions; and Section 3.3 is devoted to the BANACH space
version of CRAMER's Theorem. (In connection with the derivation of these
results, we introduce in Lemma 3.2.7 a somewhat technical mini-principle :
which turns out to play an important role throughout the rest of the book.)
Finally, in Section 3.4, we show that SCHILDER’s Theorem is a special case
of the BANACH space statement of CRAMER's Theorem and, in fact, that
a SCHILDER-like result can be proved for general GAuSsian measures.

As we said before, Chapter IV is again an application of the princi-
ples laid down in Chapter 2. In particular, we now take up the study of
SANOV-type theorems for MARKOV processes which do not necessarily have
independent increments. In order to make the development here mimic the
one in Chapter I1I, we impose extremely strong hypotheses to guarantee
that the processes with which we are dealing possess ergodic propertics
which are nearly as good as those possessed by processes with independent
increments. As a result, basically the same ideas as those in Chapter 111
apply to nice additive functionals of such processes and allow us to prove
(cf. Theorems 4.1.14 and 4.2.16) that these functionals have large devia-
tions which are governed by a convex rate function. In particular, after
identifying the rate functions involved, we use these considerations to ob-
tain a variant of the original DONSKER-VARADHAN theory for the large
deviations of the normalized occupation time distribution (i.e, the empiri-
cal distribution of the position) of a MARKOV process (cf. Theorems 4.1.43
and 4.2.43). Because it is technically the simpler, we do MARKOV chains
(i.e., MARKOV processes with a discrete time-parameter) in Section 4.1 and
move to the continuous-time setting in Section 4.2; and in Section 4.4 we
show how. under the hypotheses used in Sections 4.1 and 4.2, one can re-
alize the large deviation theory for the empirical distribution of the whole
process as the projective limit of the theory for the position. Section 4.3,
which is somewhat a digression from the main theme and should probably
be skipped on first reading, contains DONSKER and VARADHAN's analysis
of the WIENER sausage problem.

To some extent, Chapter V represents to retreat from the pattern set
in Chapters 111 and IV and a return to the more “hands-on” approach of
Chapter I. Thus. just as in Chapter I, the approach in Chapter V is to first
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get an upper bound, basically as an application CHEBYSHEV’s inequality;
then a lower bound via ergodic considerations; and finally a reconciliation
the two. A rather general treatment of the upper bound is given in Sec-
tion 5.1, where, in Theorem 5.1.6 and Corollary 5.1.11, we sharpen results
obtained earlier in Theorem 2.2.4. In preparation for the derivation of the
lower bound, we digress in Section 5.2 and give a brief resumé of a few more
or less familiar results from ergodic theory. As a first application of these
considerations, we present in Section 5.3 a very general large deviation re-
sult for the empirical distribution of the position of a symmetric MARKOV
process (cf. Theorem 5.3.10). Our second application is the content of
Section 5.4, where we prove CHIYONOBU and KUSUOKA'’s recent theorem
about the process level large deviations of a (not necessarily MARKOV) hy-
permixing process (cf. Theorem 5.4.27); and, in Section 5.5, we discuss the
hypermixing property for processes which are e-MARKOV.

The motivation behind Chapter V has been our desire to get away from
the extremely strong ergodic assumptions on which the techniques in Chap-
ters III and IV depend and to replace thein with assumptions which have a
better chance of holding in either non-compact or infinite dimensional sit-
uations. In order to test and compare the scope of the various techniques
which are contained in Chapters IV and V, we describe in Chapter VI some
analytic results with which one can see, at least in the context of diffusion
processes, the relative position of these results as measured on the scale of
elliptic coercivity.

The ¢entents of Chapters I through IV constitute a reasonably thorough
introduction to the basic ideas of the theory and more or less record lectures
given by the second author during the fall of 1987. Thus, we consider these
four chapters as a suitable package on which to base a semester length
course for advanced graduate students with a strong background in analysis
and some knowledge of probability theory. In this connection, we point
out that each section ends with a large selection of exercises. Although

“some of these exercises are quite routine and do not require any particular
ingenuity on the part of the student, others are more demanding. Indeed,
we have not hesitated to include in the exercises a good deal of important
material. In particular, it is only in the exercises that one can find most of
the applications.

Finally, a word about the history of this book may be in order. In 1983,
the second author gave a course, at the University of Colorado, in which he
taught himself and one or two others something about the modern theory
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of large deviations. Having expended considerable effort on the task, he
decided to set down everything which he then knew about the subject in a
little book [101]. That was five years ago. In the intervening years, both
the subject as well as his understanding of it have grown; and, with the aid
and comfort provided by a fellow sufferer, he took on the more ambitious
project of basing a full blown exposition on the course which he gave in fall
of 1987 at M.I.T. Thus, the present book is a great deal longer: both be-
cause it contains more material and because the exposition is more detailed.
Unfortunately, in the process of removing some of the more glaring imper-
fections and omissions in [101], we are confident that we have introduced
a sufficient number of new flaws to keep our readers somewhat annoyed
and, occasionally, thoroughly confounded. However, the responsibility for
these flaws is entirely ours and not that of the ever patient students in
18.158, who struggled with the class notes out of which this final version
evolved. In particular, we take this opportunity to thank STEVE FROMM
for goading us into addressing several of the more perplexing inanities in
those class notes. Also, we are indebted to MICHAEL SHARPE who saved
us many harrowing hours manipulating TgX into doing our bidding (cf. the
similarity between the format, if not the content, of the present volume and
volume # 133 in the same series); and, last but not least, it is a pleasure
for us to thank our typist for Eir beautiful work.

Cambridge, MA
December 31, 1988
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I  Some Examples

1.1 The General Idea

Let E be a Polish space (i.e.. a complete. separable metric space) and
suppose that {y, : € > 0} is a family of probability measures on E with
the property that pu, = é, as ¢ — 0 for some p € E (i.e., jt. tends
weakly to the point mass 6,). Then, for each open set U 3 p. we have that
pe(U€) — 0; and so we can reasonably say that, as € — 0, the measures y
“see p as being typical.” Equivalently, one can say that events I' C F lying
outside of a neighborhood of p describe increasingly “deviant” behavior.
What is often an important and interesting problem is the determination
of just how “deviant” a particular event is. That is, given an event I' for
which p ¢ T, one wants to know the rate at which p (') is tending to 0. In
general, a detailed answer to this question is seldom available. However, if
one restricts ones attention to events which are “very deviant” in the sense
that u.(T") goes to zero exponentially fast and if one only asks about the
exponential rate, then one has a much better chance of finding a solution
and one is studying the large deviations of the family {u. : € > 0}. In order
to understand why the analysis of large deviations ought to be relatively
easy and what one should expect such an analysis to yield, consider the
case in which all of the measures p, are absolutely continuous with respect
to some fixed reference measure m. Since pu, => 8y, it is reasonable to
suppose that 3

dpe _ 2
< = 9 exp[-1/e]

where € log g. — 0 uniformly fast ase — O and [ isa non-negative function
which vanishes only at the point p. One then has, for any I' with m(T) < oo,
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elog(ue(T)) = log (/r‘ ge - exp[—1I/e] dm)E
o log (/r exp[—I/e] dm)e + o(1);
and so (since m(I') < o0)
(/r‘ exp[—I/e] dm) — —ess. sup{exp[—I(q)} 1q € I‘}

as € — 0. (The “essential” here refers to the measure m.)
Hence, in the situation described above, we have, at least when m(T) <

0o:
(1.1.1) lir%elogus(l‘) = —ess.inf{I(q) : g € T}.

€—
In particular, the factor g, plays no role in the analysis of large deviations; / e

and it is this fact which accounts for the relative simplicity of this sort of///
analysis. Moreover, it is often edsy to extend (1.1.1) to cover all I'’s. Fof
_instance, such an extension can certainly be made if one knows that for

each L > 0 there is a I';, such that

ey m(Iy) < oo and @elog (ke(TE)) < L.

In particular, we see that if E = R?, A\« is LEBESGUE’s measure on RY,
. and

s dgde o of ol
11.13) Ye(dg) = (2me) exp = Ara(dg),
b_ then
(1.1.4) !%elog(yt(F)) = —ess.inf{|q|>/2: ¢ € T}

for all measurable I' in R9.

Although the preceding gives some insight into the phenomena of large
deviations, it relies entirely on the existence of the reference measure m
and therefore does not apply to many situations of interest (e.g., it will
nearly neyer apply when E is an infinite dimensional space). When there
is no reference measure, it is clear that (1.1.1) has got to be replaced by an
expression in which m does not appear. Taking a hint from the theory of
weak convergence, one is tempted to guess that a reasonable replacement
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for (1.1.1) in more general situations is the statement that there exists a
function I : E — [0, 00] with the property that

lim ¢ log (4e(I")) < Tim e log(se(I')) < —inf 1.
e

e—0

(1.1.5) ~infl <

For instance, it is easy to pass from (1.1.4) to (1.1.5) with g = 7. and
I(q) = lql?/2.

With the preceding in mind, we will adopt the attitude that the study
of large deviations for {ue : € > 0} centers around the identification of
an appropriate I for which (1.1.5) holds. Before attempting to lay out a
general strategy, we will begin by presenting two classical cases in which
such a program can be successfully carried to completion.

1.1.6 Exercise.

Let E = [0,00) and define

i
e(dg) = - exp[—g/€] Ao,oc) (da)
for € € (0,00). Show that (1.1.5) holds with I(q) = g, ¢ € [0, 00).

1.2 The Classical Cramer Theorem

Let u be a probability measure on R and, for n > 1, let x™ on R™ denote
the n-fold tensor product of p with itself. Next, let u, on R denote the
distribution of x € R® +— 1 3°7 z; under u". Assuming that [ |z| u(dz) <
00, the weak law of large numbers says that u, = 6,, where p = [ z u(dz).
Thus, {un : n > 1} is a candidate for a theory of large deviations (take
te = pn for n — 1 < 1/¢ < n in order to make the notation here conform
with that in Section 1.1). Moreover, in the case when u(dz) = v, (dz) (cf.
(1.1.3) and take the d there to be 1), we have that u, = v,/,. Hence, at
least for this special case, we know the theory of large deviations. Namely,
we know that we can take F(z) = |z|?/2. The purpose of the present section
is to find the large deviation tkeory for other choices of .

We begin our program by introducing the logarithmic moment gen-
erating function :

(1.2.1) Au()) = log ( /R exp[Aq] u(dq)) , A€ER.

Note that A € R — A,()) € [0,00] is a lower semi-continuous convex
function. Indeed, by truncation, it is easy to write A, as the non-decreasing
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limit of smooth functions, and the convexity of A, follows from HOLDER’s
inequality. Next, let A;, be the Legendre transform of A,:

(1.2.2) AL(z) =sup{Adz - A, (A): A€eR}, z€R

Note that, by its definition as the point-wise supremum of linear functions,
A}, is necessarily lower semi-continuous and convex. In order to develop
some feeling for the relationship between A, A, and p, we present the
following elementary lemma.

1.2.3 Lemma. Let u be a probability measure on R. Then 20
Moreover:

(i) If [qlr|u(dz) < oc and p = [y T p(dz), then A,(p) = 0, A}, is non-
decreasing on [p, oc) and non-increasing on (—oc, p]. In addition, for ¢ > p,
AL(q) = sup{Ag — A (A) : A > 0} and p([g, »)) < exp[ A‘(q)] and, for
g < p, Ay (g) = sup{Ag— A,(A) : A < 0} and p((—o0,q]) < exp[-A3(q)].
(ii) If A,(A) < oo for all A'’s in a neighborhood of 0, then A} (z) — oo as
|z] — oc.

(iii) If A,()) < oo for all X € R, then A, € C*°(R) and A (z)/|z| — o0
as |z| — oc.

PROOF: We begin by noting that, since Az — A,,(»\) = 0 for A = 0 and
every z € R, A} (z) > 0.

Now suppose that [ |z| u(dz) < oo and set p = fR z pu(dz). To see that
A}, (p) = 0, we use JENSEN’s inequality to obtain

(1.2.4) ' Au(A) > Ap forall A €R.

In particular, this shows that Ap—A,(A) < 0 forall A € Rand so A}, (p) < 0.
Since A}, is non-negative and convex, this proves that A}, (p) = 0, A‘ is non-
decreasmg on [p, 00), and A, is non-increasing on (—oo p] To complete the
proof of i), we ﬁrst note that as a consequence of (1.2.4), xf q > “then
AL(1) = sup{Ag — Au(A) : A > 0} and if ¢ < p then Aj(q) = SUp (Aq -
AutA) : A < 0}. Hence, if ¢ > p, then, since (by CHEBYCHEV s inequality)

ﬂ([q, m)) »S exp[_ (’\q a7 AM(’\))]t : A b 0»

we see that
#([g,0)) < exp[—A3(q)].

Similarly, if ¢ <'p, then

n((—00,q]) < exp[—A5(q)]-
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We next turn to the proof of (ii) and (iii). To this end, note that if A > 0
| (A <0)and A,(}) < oo, then limg_oo A% (x)/x 2 A (lim,_,_  Aj(z)/z <
—)). Hence, the only assertion left to be proved is that A, € C*(R) if
Au(A) < oo for all A. But, by TAYLOR's Theorem and the LEBESGUE
Dominated Convergence Theorem, it is easy to check that A € (—=6,6) —
A,(X) is, in fact, real-analytic as long as A,(+6) < oo. 1§ ‘

As a consequence of part (i) of Lemma 1.2.3 we have the following.

1.2.5 Lemma. If [ |z|p(dr) < oo then for every closed set ' C R
— 1 i
,.l.'_.";o 5 log(pun(F)) < —u}fA#.

PROOF: Let p = [gz u(dz) and note that [ |z|pun(dz) < Jg Izl p(dz) <
oo and fnzu,.(dz) = p for all n > 1. Next, observe that if A, = A,
then An(A) = nA,(A/n), and therefore that A} = nAj. Now suppose that
g > p (g < p). Then, by (i) applied to u, we see that un([g,00)) <
exp[—nA;(q)] (tn((—00,q]) exp[—nA“‘(q)]). Since A}, is non-decreasing
(non-increasing) on [p, 00) (on (—00,p]). this proves the result when either
F Cp,o0) or F C (—00,p]. On the other liand, if both F'N[p,00) # @ and
Fn(—oc,p] #0,let gy =inf{z >p:2€ F}landg. =sup{z <p:z € F}.
Then

pn(F) < exp[-nAj(g-)] + exp[-nAj(g4)] < 2exp[-n inf AT

and so the result holds in this case also. §

1.2.6 Theorem. (CRAMER) Assume that A,(A) < oo for every A € R.
Then for every measurable I' C R one has that

ST ok — 1 : 2
—ipfA, < lim = log(ua(I') < Tim ~log(un(T)) < - inf Ay,
(We adopt here, and throughout, the convention that the infimum over the
null set is +00.) ;

PROOF: In view of Lemma 1.2.5, we need only show that if ¢ € R and
§>0,

ok :
(12.7) lim = log[un((g — 6,9+ 6))] 2 —A}(9).
n-—o0o n
In proving (1.2.7), we first suppose that there is a A € R for which
A%(q) = Ag — A4(X). Consider the probability measure

exp [Az]

e_xp_ [A”(/\).] p(dz),

ﬁ(dx_) =
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and define the measures fi,, accordingly. Note that fR |z| i(dz) < oo and
that
/ o ulde] = —1——/ xexp[Az]u(dz) = —d—A (t)l =F
R exp[A, (V)] Jr dt 007 55
At the same time, note that % (tg — Au(t))|,_, = 0 since t € R +—
tq — A, (t) achieves its maximum value at A. Combining these, we conclude

that ¢ = fa z fi(dz) and therefore (by the Weak Law of Large Numbers)
that fin,((¢ — 8,9+ §)) — 1 as n — oo. Assuming that A > 0, note that

bn((g — 06,9+ 6)) = p"(An)
> exp[-nA(g + 6)] / exp [AZ yk] u"(dy)
An 1

= exp[—n(A(q +6) — A“(/\))]ﬁn((q -6,q+4)),

where e
A, = {yGR" : l;ll-Zyk—q| <6}.
1

From this and the preceding comments, we conclude that

lim Elog[u,.((q 8, q+6))] =Aslg) =

n— 00

for every 6§ > 0. Since the left hand side of the above is clearly non-
decreasing as a function of § > 0, we have now proved (1.2.7) for the case
when there is a A > 0 for which Aj(q) = Ag — A,(A). Clearly, the same
argument (with ¢ — § replacing ¢ + ) works when A},(q) = Ag — A,(]) for
someé A < 0.

We must now handle the case in which Aj(q) > Ag — A,(A) for all
A €R. If ¢ > [jzu(dz), then (cf. (i) of Lemma 1.2.3) there exists a
sequence A /" oo such that Aeg — A,(Ae) / A} (g). Since it is clear that

/ exp[A¢ - (z — q)] u(dz) — 0,
(—o00,q)

we have that

[ explae: (@ - )] uide) — expl-A3(0)]-
But this is possible only if u((g,00)) = 0 and u({g}) = exp[-A}(q)].

Hence, p"({(g,..-,9)}) = exp [—-nA‘ (9)], and so pn({g}) > exp[—nA‘ (9)]-
Clearly, this implies (1.2.7) holds for every § > 0. An analogous argument
can be used in the case when ¢ < fn z u(dz). B
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1.2.8 Remark.

The reader should take note of the structure of the preceding line of
reasoning. Namely, the upper bound comes from optimizing over a family
of CHEBYCHEV inequalities; while the lower bound comes from introducing
a RADON-NIKODYM factor in order to make what was originally “deviant”
behavior look like typical behavior. This pattern of proof is one of the two
most powerful tools in the theory of large deviations. In particular, it will
be used in the next section as well as Sections 5.3 and 5.4.

1.2.9 Exercise.

Assuming that [ |z| u(dz) < oo, show that
(k210) . / exp[aA;(r)] u(dz) < 1—2——(;, a € (0,1).
% =

Hint: Set p = [, z pu(dxr) and show that if A;,(g) < oc, then

I
l-a

/ exp[aA,(z)] u(dz) < or / exp[aA},(z)] p(dz) <
[p,a] la.p]

l—-a

according to whether ¢ > p or ¢ < p.
1.2.11 Exercise.

(i) Show that for every p € R: A“‘p(z‘) = A} (x-p), z € R, where pup = 6, %t
and we use v x o to denote the convolution of v with p.

(ii) If u = aby + (1 — a)bp, where a < b and a € (0, 1), show that

b—z

i ot for z ¢ [a,b]
T)= i - = '
§2 log ity + B3 log oty for = € fa.bl,

where 0log0 = 0.
(iii) If p(dz) = X[0,00)()e™* dz, show that

A*(2) {oo forr <0
z) =
# z—1-logz forz >0.

(iv) If u(dz) = (2m0?) /2 exp[—(z — a)?/20?] dz, where a € R and o > 0,

show that ( )2
= r—a
AL(z) = Y
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1.3 Schilder’s Theorem

In this section we give an example of a large deviation result for a certain
family of measures on an infinite dimensional space.

Let d € Z* be given and set

sond ]

81  ©= {0 € C([0,):R?%) : 6(0) = 0 and 'lim lo({'” = 0}.

For 8 € © define

ot
18lle = sup M
Lot
and observe that (.| -|le) is a separable real BANACH space. In order to

represent the dual O of ©. note that © is naturally isometric to the space
of continuous paths on [0. 5c) which vanish at 0 and at oc (namely, map 6 to
the path t — (1+1)716(t)): and use this isometry to identify ©* with the
space of R%valued, BOREL measures A on [0, oc) with the properties that
A({0}) = 0 and flo,m)(l + t) |A\|(dt) < oc, where |A| denotes the variation
measure associated with A. With this identification, the duality relation
9.</\. 0)'8 is given by f[()‘x) 0(t)-A(dt) (the “-" here standing for the ordinary
inner product in R4) and [|Ale- = f[o x) (14 t)|A|(dt).

Let B = Beg denote the BOREL field over ©; and, for t > 0, let B,
denote the smallest o-algebra over © with respect to which all of the maps
6 — 6(s), s €[0.], are measurable. As is easy to check, B = o (Uyso Bt)-
The following remarkable existence theorem is due to N. WIENER [112].
We have added a few small embellishments to WIENER's original statement.

1.3.2 Theorem. (WIENER) There is a unique probability measure W on
(©.B) with the property that

(1.3.3) /eexp[\/'"leQ ) ] (d9) = exp[-Aw(N)]. A€ O,

where

(1.3.4) AwA) =

N | —

/ sAt Ads) - A(dt).
(0.00)? i

Moreover, if P is a probability measure on ((-), B), then P = W if and only
if any one of the following holds:

(i) For all 0 < s < t, the random variable § — 6(t) — 6(s) under P is
independent of B, and is GAUSSian with mean 0 and covariance (t — s)Iga.



