AUTOMATING CODE
AND DOCUMENTATION
MANAGEMENT (CDM)

Margaret E. Singleton
BTG, Inc. 8

—

AUTOMATING CODE
AND DOCUMENTATION
MANAGEMENT (CDM)

The Intelligent Guidance
of Change

Margaret E. Singletnn
BTG, Inc. | !

A Reston Book
l@l Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Daia

Singleton, Margaret E.
Automating code and documentation management (CDM).

A Reston book.

Bibliography: p.

Includes index.

|. Computer software. 2. Electronic data processing
documentation. 1. Title.
QA76.754.856 1987 005.1 86-8112
ISBN 0-8359-9344-2

Cover design: Lungren Graphics Ltd.
Manufacturing buyer: Ed O’Dougherty

Cover art and Figure 5.1A have been adapted
from an original drawing by Vicky heim, and are
used herein by permission of the artist

A Reston Book

© 1987 by Prentice-Hall, Inc.

A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

100 9 8 7 6 5 4 3 2 1
p

ISBN 0-8358-9344-2 02s

Prentice-Hall International (UK) Limited, london
Prentice-Hall of Australia Pty. Limited, Syvdney

. Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Lida., Rio de Juneiro

FOREWORD

Many treatises have been written addressing documentation-, data-, covde-, and
configuration-management disciplines and their application within govern-
ment and industry. Unfortunately, historical approaches and solutions to
problems involving these disciplines have tended to fractionate instead of in-
tegrate them. Often, an organization’s structure and policy arbitrarily inhibit
the integration of documentation and configuration management disciplines
that naturally should be integrated within that organization.

This text is a step toward the solving of this problem, providing ample
evidence of the benefits that can be gained through integration, partlcularly
when automation can facilitate that end.

There are really two disciplines addressed in this text, not four as alluded

to above, for government and industry tend to use different terms for the same
thing. Thus we find that the terms ‘‘data and configuration management’’ as
used in government circles correlate with the terms ‘‘code and documentation
management’’ as used in commercial data-processing circles.

Irrespective of the terminology used, the focus of this text is management
of the products of the software development process. Clearly, these products
are of different forms and representations, including specifications, manuals,
source code, object code, data and media carrying the code, and data and
documentation. Effective management of these products during their life cycle
demands the application of the configuration management discipline to ensure
a controlled evolution and systematic baselining of these products and, more-
over, disciplined control of changes to them.

Automating the control of software products can greatly facilitate bring-
ing together all of the products created by and flowing from the software
development process. Awkward organization boundaries between documen-
tation and software management disciplines can be overcome and even elim-
inated through automation, because of the integrating effect it has.

The reader will find that this straightforward, casy-to-read book draws
considerably upon the experience and knowledge of others. With its topical
style and organization, it should serve as a very useful guide and information

xii FOREWORD

source for those entering the arena of automating, in whole or in part, the
process of controling software products through configuration management.
Do not look to this book for theoretical expositions about the subject:
This book is ‘“‘down-to-earth,”” reflecting real experiences by real people and
translating them into a-software and documentation control methodology that
®an be easily grasped and applied using currently available automation tech-
niques and tools.
‘ _
Vi HENDERSON
President, Desiderum, Inc.

PREFACE

This book has a single purpose: to demonstrate the cost-benefit of combining
. and automating software configuration management and software documen-
tation.

When they see the term ‘‘configuration management’’ (CM), readers in
the commercial sector may feel ‘‘that’s for the military—our overhead would
never support it.”” That’s just the point! Automating CM and documentation,
as proposed in this book, benefits you so much that you cannot afford not to
do-it. The problem of uncontrolled software and documentation now costs
- more than its solution. q

Code and Documentation Management (CDM) is the integration and
automation of two previously separate software disciplines: configuration
management (CM) and documentation management (DM).

Software configuration management first appeared on projects devel-
oping large-scale software applications for the government. This discipline
makes sure that no changes are made to the software without the cognizance
or consent of everyone throughout the entire system or network.

Software documentation has usually been a separately organized process
that takes place after the software is complete. This results in documentation
that is usually out-of-date and therefore useless.)

Code and Documentation Management (CDM) enables these two pro-
cesses—software configuration management and software documentation—to
occur simultaneously. The key to this accomplishment is automation, because
computers are much better than people at all the drudgery involved in tracking
changes. A single change to the software, like a stone dropped in a still pond,
ripples to many different nooks and crannies within the software and its doc-
uments; it is difficult for any one person to know what the full impact of a
change really is.

Chapters 1 and 2 of this book explain why you should use CDM. Chapter
3 is a graphic example of what CDM is. Chapters 4 through 6 explain how
CDM affects the traditional software CM disciplines. Chapters 7 and 8 tell
how to get started, for both centralized and decentralized applications.

xiii

xiv PREFACE

In this book, ‘‘you”’ refers to anyone who wants to get better control of
software and software documentation:

1. Managers and programmer/analysts involved with software development or
maintenance projects. -

2. MIS directors concerned with controlling data and text files in a distributed net-
work of minis and PCs.

3. ADP directors maintaining and developing various applications for a large num-
ber of corporate users.

HOW TO USE THIS BOOK

If you are experienced in software configuration management and/or software

documentation, read Chapter 1 for a fresh viewpoint, and Chapters 2 and 3

for dew ideas. If at that point you like the concept, read the ‘‘Introduction’’

and ‘“‘Recommendations’’ sections of the other chapters to know which ones

you want to read entirely. ‘

If you are new to these topics, congratulations! You have a chance to
learn from, and avoid, the inefficiencies of the past. Please start with Chapter
1 and read everything. '

ACKNOWLEDGMENTS

I would like to take this epportunity to thank all those who reviewed the
manuscript: Gloria Gilliam, Gerry Lolmaugh, Les Garner, Barbara White, Ed
Brooks, Harold Waddles, Julie Thomas, and Don Lewis.
The “‘display clutter’” problem in Chapter 3 is based on an actual prob-
lem encountered and processed, using primarily manual methods, at SAIC.
I am indebted to Technology Training Corporation for the opportunity
to teach a seminar on this subject; this book is based on my seminar material.
I wish to thank my colleagues at Ensco, Inc., Springfield, Virginia; Ford
Aerospace and Communications Corporation, Hanover, Maryland, College
Park, Maryland, and Houston, Texas; Science Applications International Cor-
poration, McLean, Virginia; BTG, Inc., Vienna, Virginia; and Martin Mar-
ietta Corporation for their interest and support; and Martha Hook and the
staff of Reston Publications for helping to get this book to publication.
Last but not least, I would like to acknowledge the tolerance of my chil-
dren, Lucy and Lenny, who wondered if the book would ever be finished.

XV

A ey

)

Foreword
Preface

CONTENTS

Acknowledgments

1 WHY DO | NEED CDM?

Pl oowany o il LD et
0N LA WN -

21
22
%53
2.4
2:5
2.6
231

Introduction

The Software Life-cycle =

Introduction to Software Configuration Management
The Problem with Configuration Management
Introduction to Software Documentation

The Probler: with Software Documentation

The Solution

CDM Process Overview

I CAN'T AFFORD TO!

Introduction

The Awful Truth of Documentation Costs
Don’t Do What You Don’t Have To
Reduce Redesign—Use the OCD

Use CDM to Further Reduce Costs

CDM Case Studies

Recommendations

xi
Xiii
XV

o0 h N =

11
17
20

26

26
28
31
33
35
38
53

vii

viii

CONTENTS

HOW DOES IT WORK?

3:1
3.2
3.3
3.4
3.5
3.6
37
3.8
3.9

Introduction

“I’ve Got a Problem with this Software!”’
The “‘Display Clutter’’ Problem

What Else Will Change?

Is It in Scope?

“It’s OK—We’ll Fund It"

Done! y

““The Following SDRs Have Been Closed”’
Benefits of Using CDM

AUTOMATING SOFTWARE
CONFIGURATION IDENTIFICATION

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction)
Defining Software Conflguratxon Items
Naming Software Configuration Items
Labeling Software Configuration Items
Describing Software Configuration Items
Implications for the Methodology
Recommendations

CODE AND DOCUMENTATION CONTROL

5.1
52
5.3
5.4
5.5
5.6
3.7
58
59

CODE AND DOCUMENTATION ACCOUNTING

Introduction

Tools

Types of Control

Types of Changes

Code and Documentation Librariés
Establish Baselines Incrementally
Change Baselines Incrementally

Formal Release of Code and Documents
Recommendations

AND AUDITS

6.1
6.2

Introduction
Status Accounting Evolution

54

54
33
55
60
60
63
64
65
67

68

68
69
70
77
78
78
80

82

82
82
87
88
90
93
%
101
106

109

109
109

R

6.3
6.4
6.5
6.6

. 6.7

CONTENTS

Status Accounting Reports
Implications of the CDM Approach
Configuration Audits

Implications for the Methodology
Recommendations

MY PEOPLE WON'T GO FOR IT!

T
7.2

3
7.4
7.5

Introduction

Unifying Code and Documentation
Management Organizationally
Finding the Right CDM Staff
Running Effective Staff Meetings
Re¢ommendations

HOW TO GET START=

8.1
8.2
8.3
8.4
8¢5
8.6
8.7
8.8

Introduction

How to Determine Your CDM Needs

How to Get Funded

How to Specify a CDM System

How to Get It Accepted

Issues Involved in Building a CDM System
How to Test a CDM System

How to Operate and Maintain a CDM System

Bibliography

Index

. 116
117
122
-125
126

127

<127

127
129
132
133

134

134
136
142

143
151
152
155
157

159
161

ONE \
WHY DO | NEED CDM?

1.1 INTRODUCTION

Code and Documentation Management (CDM) is the merger and automation
of two related disciplines—software configuration management and software
documentation. Taken independently, there are problems with trying to adhere
to either of these disciplines. The problem with traditional, labor-intensive
software configuration management (CM) is that as the size of the software
increases CM becomes prohibitively expensive to do effectively. The manual
process just cannot keep up with the overwhelming complexity and volume of
the task at hand. The problem with traditional, labor-intensive software doc-
umentation is that the documents cost too much and are usually inaccurate,
redundant, and out-of-date as soon as they are produced.

CDM, the merger of software configuration management and software
documentation, is machine-intensive. It depends on automation: putting all
software documents on-line and using such software tools as a text editor, a
data dictionary/directory, and a database management system. Using this ap-
proach and appropriate tools, it is technically feasible to (1) quickly and ac-
curately know how much a proposed change would cost to do correctly, (2)
simultaneously implement changes in both the code and its documentation,

2 WHY DO I NEED CDM?

and (3) automate such necessary cross-references as the tracing of require-
ments.

CDM cuts costs, saves time, and provides better visibility and control
than manual methods. <

This chapter shows how the software development process works and
how using the CDM approach—automated software configuration and doe-
umentation management—improves the quality of both software and docu-
mentation. It explains the software life-cycle, why CM and documentation are
need~d, and what the attendant problems are with doing things manually. It
then provides an overview of the CDM approach.

1.2 THE SOFTWARE LIFE-CYCLE

Like human beings, software programs have a life-cycle. They are conceived
(specification phase) and reared (design and code phases). After passing their
college entrance examinations (unit tests), and then their college examinations
(system tests), they are sent out into the world (operational phase). However,
they still need—especially in today’s constantly changing world—continued
training (maintenance phase). These phases flow into one another, as is ex-
pressed by the “‘waterfall model”” pictured in Figure 1-1. Different projects
follow this model in different ways, of course. On large, formal projects, the
documents are more voluminous because the software product goes through
several reviews, one at the conclusion of each phase, before beginning the
next. On small commercial projects the specification and design phases may
be very informal.

Software development costs are discontinuous throughout this life-cycle.
For instance, it costs more to maintain software than to develop it, as Figure
1-2 shows. Over a five- to ten-year life-cycle, maintenance costs much more
than development. Although using the CDM approach produces benefits in
all phases, it has its greatest-impact in the maintenance phase.

A baseline is the software and its documents at a specific point in the
development cycle. As the software develops it is constantly evolving, like a
child growing. A baseline provides a “‘snapshot”’ of the software at a certain
point in its development, like a student’s school photograph. To “‘strike a
baseline’” means to place the software and its documents under configuration
control, after which point changes can only be made with the approval of a
change control board, and the entire baseline can be thoroughly reviewed.

There are three principal baselines: (1) functional, (2) allocated, and (3)
product. All three baselines are shown in Figure 1-1. The functional baseline
refers to the documents that identify which functions the software will per-
form. The allocated baseline assigns these functions to specific hardware and/

-

WHY DO I NEED CDM?

3

System
Feasibility
Validation
. : |\ FUNCTIONAL BASELINE
\ Software Plans and.
Requirements
o e L\ ALLOCATED BASELINE

Product Design

Verification

™

\ Detailed Design

Verification

_ Code

Ay

Unit Test \

Inteération
Product
Verification
PRODUCT BASELINE o
Y
_‘ Implementation

/

FIGURE 1-1 The waterfali model of the software life-cycle.

System Test \

Operations and
Maintenance

w7
/ Revai. Jation

Source: Barry W. Boehm, Sofware Engineering Economics, Prentice-Hall, 1981.

4 WHY DO I NEED CDM?

100

80 | —

Hardware

Developmeri!

D
o

S
o

Percent of total costs

Software

20

Maintenance

1955 . 1970 1985

Year

FIGURE 1-2 Hardware/software cost trends.

Source: Barry W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

or software items. Up to this point, everything in these baselines is paper. We
have not begun coding yet.

The last baseline, and the most difficult to achieve, is the product base-
line. The first stage of the product baseline is the detailed software design.
Until the software design is approved, coding does not begin. This review is
usually called the critical design review (CDR) to distinguish it from other
reviews. ‘

Once begun, the code itself goes through several stages. Each module is
coded and tested individually. All of the modules in a functional unit are tested
together. A unit that passes the test is baselined as part of the preliminary .
product baseline. At this point, no more changes can be made by the pro-
grammers without control board approval, and the test team tests the software
with the hardware and the other software already developed. In this way a
large system is developed in stages called builds, much as a student learns al-
gebra after learning arithmetic. For instance, if system users will interact with
the software via a special-purpose display, the display software needs to be
working first, because it will be used to help develop the rest.

When the-entire system is ready, it goes through operational testing to
see if it can handle real-world problems. Resulting problems are fixed, and
the final product baseline is delivered to the customer. ’

WHY DO I NEED CDM? 5

1.3 INTRODUCTION TO SOFTWARE
CONFIGURATION MANAGEMENT

Software configuration management (CM) is a discipline that helps to co‘trol
the development of software. It does this by structuring communication among
software professionals about proposed changes to the software before these
changes are made. Briefly stated, CM procedure is that anyone who wants to
change baselined software first submits a change request to a change control
board. Anyone whose work might be affected by the change is represented on
this board. Only if the board approves is the change made. By developing such’
consensus and cognizance about proposed changes, CM procedures ensure that
the new wrinkle that Marketing, for example, wants to put into their reports
will not cause the Finance program to crash. In this way CM can help large-
scale software development to take place, and make all software development
a little easier.

CM procedures are needed because DP professionals tend to be inde-
pendent by nature and are not likely to communicate so thoroughly without
such procedures. In fact, research shews that the motivations of DP people
are often different from the people in the rest of the company, as Figure [-3
demonstrates. Here, ‘‘growth needs’’ refers to the need for new learning. ‘‘So-
cial needs’’ refers to the need of people to be included with, approved of, and
recognized by other people. People in management tend to be high on the
social needs scale because they are strongly motivated to achieve status and
results that other people will recognize. They wear the three-piece suit, and
want visible signs of rank—a corner office, a company car, a six button tele-
phone. On the other hand, the software development people tend to be high
on the growth needs scale. Their desire is to continually upgrade their skills
and to find or develop new tools to do the job -better. The reason that they
are attracted to software development is that they like to work by themselves
and to puzzle things out. To them, the reward is in solving the puzzle: in get-
ting the code to do useful things. Their expressed need for communication
with, and approval from, other péople is much less than that of people who
work in different professions (sales, management, clerical, and so on).

The Story of Larry Walkman

To illustrate, consider a programmer whom [will call Larry Walkman,
because he walked around the halls of an industry giant at all hours with a
Sony Walkman plugged into his ears. At 4 A.M. on a snowy subzero Sunday
morning in January, Larry’s task was to complete his proposal volume and
hand it to the word-processing operators. Larry, however, did not want to
work with them because they were using magnetic card machines. This, he
felt, was a terribly boring, antiquated way to do things. Instead, he keyed his
document in to the mainframe in another building, formatting it there using

6 WHY DO I NEED CDM?

6.0
+ / Growth Needs
&8 i /Social Needs
5.0
45

4.0
Data Sales " Other Service Clerical Managerial
Proc. Profs.

FIGURE 1-3 Compa;ative growth needs and social needs.

Source: Adapted from J. Daniel Cougar and Robert A. Zawacki, ““What Motivates DP Professionals?’* Da-
tamation; Sept. 1978, pp. 117-128.

an IBM program called GML (Genergﬁ;ed Markup Language). Then he ran
the formatted document back over tg, the laser printer in his building to print
- it-out. Very jazzy. gl :

'~ When the laser printer sfarted to print out, someone lifted the lid to see
what ‘was happening. In the resulting printout Larry then noticed an extra
garbled line between lines 10 and 11 on one page. Functionally, it did not
matter, because the print was legible and the typists were still going to enter
this document on mag card anyway. All he had to do was walk the document
down the hall, and he could 20 home.

However, Larry became fascinated with whatever was causing that extra
line. He ran the text back through the mainframe, and printed it out on the
laser printer again. This time, he did not touch the lid, but the extra line still
appeared. Then he became really fascinated. He got on a terminal and called
up the program that made the laser printer work. By now it was 5 A.m. The
proposal volume assigned to Larry lay ignored on a table as he stared into the
terminal, chasing the glitch he had discovered.

