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Preface

February 27 — March 1, 1997, the conference Optimal Control: The-
ory, Algorithms, and Applications took place at the University of Florida,
hosted by the Center for Applied Optimization. The conference brought
together researchers from universities, industry, and government laborato-
ries in the United States, Germany, Italy, France, Canada, and Sweden.
There were forty-five invited talks, including seven talks by students. The
conference was sponsored by the National Science Foundation and endorsed
by.-the SIAM Activity Group on Control and Systems Theory, the Mathe-
matical Programming Society, the International Federation for Information
Processing (IFIP), and the International Association for Mathematics and
Computers in Simulation (IMACS).

Since its inception in the 1940s and 1950s, Optimal Control has been
closely connected to industrial applications, starting with aerospace. The
program for the Gainesville conference, which reflected the rich ecross-disci-
plinary flavor of the field, included aerospace applications as well as both
novel and emerging applications to superconductors, diffractive optics, non-
linear optics, structural analysis, bioreactors, corrosion detection, acoustic
flow, process design in chemical engineering, hydroelectric power plants,
sterilization of canned foods, robotics, and thermoelastic plates and shells.

The three days of the conference were organized around the three confer-
ence themes, theory, algorithms, and applications. This book is a collection
of the papers presented at the Gainesville conference. We would like to take
this opportunity to thank the sponsors and participants of the conference,
the authors, the referees, and the publisher for making this volume possible.
In addition, we thank Nancy Moore for her patience and persistence with
the final typesetting.

William W. Hager Panos M. Pardalos

Department of Mathematics and [SE Department and

Center for Applied Optimization Center for Applied Optimization
University of Florida University of Florida
Gainesville, FL Gainesville, FL
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Abstract

The uniform stability of a nonlinear thermoelastic plate model is in-
vestigated, where the abstract nonlinearity here satisfies assumptions
which allow the specification of the von Xirmdn nonlinearity, among
other physically relevant examples. Linear analogs of this work were
considered in [1] and [2]. Even in the absence of inserted dissipative
feedbacks on the boundary, this system is shown to be stable with
exponential decay rates which are uniform with respect to the “finite
energy” of the given initial data (uniform stability of a linear ther-
moelastic plate with added boundary dissipation was shown in [8], as
was that of the analytic case in [14]). The proof of this result involves
a multiplier method, but with the particular multiplier invoked being
of a rather nonstandard {operator theoretic) nature. In addition, the

*The research of G. Avalos is partially supported by the NSF Grant DMS-9710981.
The research of I. Lasiecka is partially supported by the NSF Grant DMS-9504822 and by
the Army Research Office Grant DA AH04-96-1-0059.



G. Avalos and I. Lasiecka

“free” boundary conditions in place for the plate component give rise
to higher order terms which pollute the decay estimates, and to deal
with these a new result for boundary traces of the wave equation must
be employed.

1 Introduction

1.1 Statement of the Problem

Let © be a bounded open subset of R? with sufficiently smooth boundary
' = I'gUTy, 'y and I'y both nonempty and IcNT{ = @ We consider
here the following thermoelastic system (the linear model was introduced
and studied in the monograph [8] of J. Lagnese):

\

wy — YAwy + Alw + aAf + Fw) =0

on (0, 00) x Q;
B8, —nAb+ o0 — alAw, =0
0
w:?,)%:o on (0, 00) x I'p;
Aw+ (1 —p)Biw+af =0
0,00) x I'y;
§Aw 0Bw  owy 08 (0 B
dv T 1-w o oy +a_(9_l/“~0
08
9Y L= > 0
ay—{—/\ on (0,00) x I, A > 0;

w(t=0)=wq, w(t=0)=w, 8t =0)=6 on Q.

Here, the parameters «, 3 and 7 are strictly positive constants; positive
constant vy is proportional to the thickness of the plate and assumed to be
small with 0 < v < C,; the constant ¢ > 0 and the boundary operators B,
and B, are given by

P 0w 0%
—v -V :
Dzdy 1 oy? 1 0z?’

Blw = 21111/2

52
Bw = (z/lg—u%)—uj—-%—ulm(

dzdy

P _ o
gy?  gz2 )"



Uniform Decays in Nonlinear Thermoelastic Systems 3

The constant g is the familiar Poisson’s ratio € (O,%). In addition, we
impose that the nonlinearity F(-) which is present in the plate component
of the coupled system satisfy the following conditions:

(Fi) The mapping F : H?(Q) — H;;(Q) is locally Lipschitz continuous,
where HITOI(Q) is denoted to be the topological dual of Hf (Q) =
{¢E HY(Q): ¢lr, =0 }. That is to say, for every wy, wy € H?*(Q)

there exists a constant C (“‘*’IHI{?(Q) , szl]Hz(Q)) such that

| F(w1) — F(“z)“}{r—ol @)
< C (leﬂm(n) v ||‘*J2Hf12(n)) llw1 — wallg2(qy (3)

(where here and in what follows below C(-) denotes a function which
is bounded for bounded values of its argument).

(Fii) The mapping F further satisfies the relation

d
[ Fludn = LEc@), @)

where Ep : H3(Q) — R is a functional which obeys the inequality
05 Erw) < C(loll) - (5)

(Fiii) The mapping F : H*(Q) — H{)(Q) satisfies the following norm
bound for every w € H?(Q2) and some € > 0:

“F(“‘J)HHFD‘(Q) <C (HWH}P(Q)) ”(*JHH2—£(Q) . (6)

The given model mathematically describes a Kirchoff plate of which the
displacement is represented by the function w; the plate is subjected to a
thermal damping. which quantified by the function 8. It has been recently
been shown in [2] that solutions to the linear version of (1) (F = 0) decay
uniformly. We will be concerned here with obtaining an analogous stability
result for solutions [w, wy, 8] to (1) with the nonlinearity F in place. It can be
shown directly (as it is so done in [3]) that examples of nonlinearities which
meet the abstract assumptions (Fi)—(Fiii) above include the following:



