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This book is intended as an intuitive, but mathematically sound,
treatment of the standard calculus sequence. Its approach to the basic
concepts—limit, continuity, derivative, integral—is mainly geometri-
cal. Variables and *y is a function of x” are used extensively but
carefully; Leibniz notation and function notation receive about equal
time.

There is some emphasis on approximation and computation
(though this material can be considered to be optional). For the most
part this appears as estimation, directed to the question “How good
an answer do I have?” However, Appendix 4 goes on to the natural
follow-up, “What must I do to get the accuracy 1 want?,” and in this
computational context there is an introduction to the ¢, 3 theory of
limits.

Most of the traditional topics from analytic geometry are covered
in Chapter 1 and Appendix 3. Chapter 1 treats lines, circles, transla-
tion of axes, and completing the square to simplify quadratic equa-
tions, while Appendix 3 develops the conic sections from their stan-
dard locus definitions. Some related material involving polar coordi-
nates and parametric equations will be found in Chapter 10.

The changes for this edition are extensive.




PREFACE

The development has been reorganized, for greater smoothness
and flexibility. It will fit courses given in three terms and also courses
given in four quarters. See below.

There is much new writing. The discussions of limits, continuity,
and the definite integral are wholly new, as are sections on I'Hopital’s
rule, improper integrals, certain integral applications, and the
natural logarithm function. Many other sections have been almost
completely rewritten.

The exposition has been simplified. Duplicated discussions have
been eliminated. Some of the more complicated topics have been
postponed (e.g., centers of mass, curvature) and several difficult
arguments have been dropped. The integral is discussed entirely in
terms of sequential convergence.

The problem collection has been reorganized and strengthened.
The symbol B has been introduced to suggest the use of a hand
calculator.

The organization now provides convenient break points for
courses given either in three terms or in four quarters. At six
chapters per term, the book divides as follows:

Term I (Chapters 1-6).1 Differential calculus; introduction to the
integral.
I (7-12). Integral calculus; infinite series.
I (18-17; 18 and/or 19). Vectors; functions of several vari-
ables.

For a course in four quarters (at four or five chapters per quarter)
the breaks occur naturally at subject changes:

Quarter I (Chapters 1-5). Differential calculus.
II (6-10). Integral calculus.
III (10-14). Infinite series; vectors and vector functions of
one variable.
IV (15-17; 18 and/or 19). Functions of several variables;
(differential equations).

Chapter 10 is mentioned twice: it can go into either quarter or it can
be split between them.

¥ Strong classes would presumably cover Chapter 1 only lightly. Classes that are less

well prepared could omit some or all of the sections on estimation and theory (5.7-5.10,
6.9).
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PREFACE

Integration can be reached in the first quarter by putting off the

trigenometric functions and some applications of the derivative, as
follows:

Quarter I (Chapters 1-3, 4.1, 4.2, 5.1-5.5, 6). Differential cal-
culus of algebraic functions; introduction to the in-
tegral.

II (4.3-4.5,5.6 (5.7-5.10 optional), 7-10). Transcendental
functions; further applications of the derivative; in-
tegral calculus.

ITT and IV as before.

For other possible re-alignments see the flow chart on page v. It
shows the major dependencies between chapters, and any reordering
of material that is consistent with the chart should involve only
minor problems of accommodation. A dotted arrow indicates a single
point of contact.

I would like to express my sincere appreciation and gratitude to
my colleagues at Addison-Wesley for their constant help and encour-
agement.

Concord, Massachusetts L.H. L.
January 1982



NEWTON,
LEIBNIZ,
AND THE
CALCULUS

The invention of calculus is attributed to two geniuses of the 17th
century, Isaac Newton in England, and, independently, Gottfried
Leibniz in Germany. Earlier mathematicians had uncovered bits and
pieces of the subject. Newton and Leibniz discovered its pattern. They
thereby created an algorithmic discipline of enormous power, applica-
ble to all sorts of fundamental questions about the nature of the
world.

Although the new calculus obviously worked, Newton and Leib-
niz did not have a clear idea of why it worked. They tried to explain
its successes by geometric reasoning, since at that time all mathemat-
ical phenomena were viewed in terms of geometry, but their explana-
tions were unsatisfactory. In fact, the logical foundations of calculus
remained a mystery for another century and a half. Some fragmen-
tary progress occurred, and a new point of view gradually emerged,
based on numbers, variables, and functional relationships between
variables. Then, around 1820, the French mathematician, Augustin
Cauchy, settled the matter by showing that calculus rests on the
properties of the limit operation. This was still not what we today call
rigor, and it took another fifty years of deeper probing to reach the
bedrock of €, & reasoning and the completeness of the real-number
system.
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INTRODUCTION

The chronological development of calculus was thus marked at
several points by leaps in precision and sophistication. Now, three
hundred years after Newton and Leibniz, we can start our study of
the subject at practically any level we wish. Since there seems to be
little point in repeating the confusions of the first one hundred fifty
years, we shall approach calculus at about the level of Cauchy, which
is still very intuitive. We can then increase our precision in a natural
manner as the subject unfolds.
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GRAPHS AND FUNCTIONS
(PRECALCULUS REVIEW)

1
COORDINATES
AND GRAPHS

Figure 1

Calculus is about functions, and it is important before starting
calculus to have a reasonably good understanding of what a function
is_and what its graph can be like. This preliminary chapter reviews
the necessary background material about graphs and functions.

Figure 1 illustrates a coordinate system on a line L

First we have chosen on | an origin point O and a unit point E
distinct from O. The origin O divides ! into two half-lines, or rays.
The half-line containing E is called positive, and the other one
negative. The segment OE is taken as the unit of length. Then each
point P on [ is assigned a _number x, called the coordinate of P, as
follows:

If P is on the positive side of O, then x is the length of the
segment OP (in terms of the unit OE).
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