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Die Mathematiker sind eine Art Franzosen: redet
man 2u ihnen, so iberselzen sie es in ihre Sprache
und dann ist es alsobald ganz etwas Anderes.

J.W. Goethe *

PREFACE

The title of this book is not meant as a pun, although it may,
at first sight, appear to be so.

Metamathematics is a theory which deals with formalized mathe-
matical theories. A formalized mathematical theory is, roughly speaking,
a set of certain finite sequences of symbols, called formulas and terms,
and of certain simple operations performed on those sequences. The for-
mulas and terms are substitutes—formed by means of a few simple
rules—of sentences and functions in an intuitive mathematical theory.
Operations on formulas correspond to elementary steps of deduction in
mathematical reasonings. The formulas corresponding to the axioms of the
intuitive theory play a special part; they are the axioms of the formalized
theory. The formulas which can be derived from the axioms by means
of the accepted operations correspond to the theorems of the theory.

The set of all formulas and the set of all terms, when considered
as sets of finite sequences with operations, can in turn be the subject
of mathematical investigations empleying more or less advanced aux-
iliary methods taken from mathematics. In the early period of the de-
velopment of mathematical logic, the general tendency was to use only
the most elementary methods possible, excluding all infinitistic methods.
The precursor of that trend was Hilbert, who believed that in this way
it would be possible to prove the consistency of mathematics. However,
Godel’s results exposed the fiasco of Hilbert’s finitistic methods as far
as consistency is concerned. The use of the finitistic methods to investigate
formalized theories is perhaps natural on account of the clearly finitistic
character of the notion of formalized theory. In practlce, however, the
restriction of methods of proof to elementary finitistic ones complicates
metamathematical investigations considerably. It also prevents a full
recognition of the exact nature of formalized mathematical theories from
the point of view of methods and ideas of modern mathematics. The use
of the more advanced infinitistic methods makes it easier to explain the
mathematical structure of formalized theories. The set of all terms of
a formalized theory is an algebra, and generally an algebra with infinitely
many operations. The set of all formulas of a formalized theory is also
an algebra—in general, it is an algebra with infinite operations. After

* ,,Ferneres iiber Mathematik und Mathematiker*, s. Werke, Grosse Weimarische
Ausg. Abt. IT, Bd. 11 (1893), s. 102.
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the natural identification of equivalent formulas, the set of all formulas
becomes a lattice: a Boolean algebra, a pseudo-Boolean algebra, a topo-
logical Boolean algebra, etc., depending on the type of the logic adopted
in the theory. These algebras in turn are connected with the notions
of a field of sets and a topological space. From this point of view it is
natural to apply in metamathematics the methods of algebra, lattice
theory, set theory and topology. The total sum of mathematical methods
useful in metamathematics makes up what in the title of this book has
been called the mathematics of metamathematics.

By means of infinitistic methods the meaning of many basic meta-
mathematical theorems is made clear. The theorem on the completeness
of the propositional calculus is seen to be exactly the same as Stone’s
theorem on the representation of Boolean algebras. The Godel theorem
on the completeness of the predicate calculus is a modification of the
Stone representation theorem, taking into account some infinite operations
in Boolean algebras. It is surprising that the Godel completeness theorem
can be obtained, for example, as a result of the Baire theorem on sets
of the first category in topological spaces, etc.

The finitistic approach of Hilbert’s school is completely abandoned
in this book. On the contrary, the infinitistic methods, making use of
the more profound ideas of mathematics, are distinetly favoured. This
brings out clearly the mathematical structure of metamathematies.
It also permits a greater simplicity and clarity in the proofs of the basic
metamathematical theorems and emphasizes the mathematical contents
of these theorems. o

The title of this book is slightly inexact since not all mathematical
methods used in metamathematics are exposed in it. Namely, Godel’s
method of arithmetization has been omitted. The exact title of the book
should be: Algebraic, lattice-theoretical, set-theoretical and topological
methods in metamathematics. The arithmetization of metamathematics
differs fundamentally from these methods and leads to different problems.
That is why we did not consider it proper to include that subject. As
a result, we have omitted that part of metamathematics which uses
arithmetization in a natural way (the decision problem, the existence
of undecidable sentences, etc.) and the theory of recursive functions, now
being developed by a large number of mathematicians.

It is difficult to establish exactly who was the first to use infinitistic
methods in metamathematics. The close relation between classical logic -
and the theory of Boolean algebras has been known for a long time.
It was the investigations in logic of Boole himself that led to the notion
which we now call the Boolean algebra. Stone’s basic result concerning
the representation of Boolean algebras permitted the broad application
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of the theory of Boolean algebras to metamathematics. The method
of treating the set of formulas or the set of equivalence classes of for-
mulas as abstract algebras, due to Lindenbaum and Tarski, proved to be
an essential research tool. It established a link between the metamathe-
matics of the theories based on classical logic and the theory of Boolean.
algebras. The works of Stone and Tarski on the connection between
the intuitionistic logic and pseudo-complemented lattices and the further
works of McKinsey and Tarski on lattice-theoretical methods in intu-
itionistic and modal propositional calculi established an analogous link
in the metamathematics of corresponding non-classical theories. Here
another essential research approach is of chief importance: the inter-
pretation of the formulas of propositional caleuli as mappings in certain
lattices. This interpretation is a generalization of the truth-table method,
long used in logic. The extension of this method to the intuitionistic
predicate calculus was first introduced by Mostowski for problems of
non-deducibility of formulas. The method of interpretation of formulas
as mappings, together with the method of identifying equivalent formulas
and treating the set of equivalence classes as an abstract algebra has
enabled us to give an algebraic-topological proof of the Goédel comple-
teness theorem and of other basic theorems. The concept of the pro-
duct of models modulo prime filters, introduced by ¥.o§ and widely
used by the Berkeley school, is another essential contribution to the
mathematical concepts of metamathematics.

Research into infinitistic methods in metamathematics is now in full
swing and is far from being completed. This book does not embrace the
whole of the research conducted in this field. In particular it does not
include Halmos’s theory of polyadic algebras and that of cylindrical
algebras worked out by Henkin, Tarski and Thompson. Neither does it
deal with the theory of the languages with infinitely long formulas,
which, through Hanf’s latest results, has found application in mathe-
matics itself, namely in the theory of prime filters in Boolean algebras
(Tarski). Certain other applications of metamathematics to mathematics
(the results of A. Robinson and others) and the general theory of models
are also disregarded.

Moreover, the problems discussed in this book are far from being
treated in an exhaustive manner. The purpose of this book is only to
introduce the reader to the basic ideas of the infinitistic approach to
metamathematics, especially into the methods directly connected with
the authors’ own work. The accompanying bibliography has no claims
to completeness.

The book is written in an elementary way in the sense that it re-
quires no knowledge of mathematics and metamathematics beyond that
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L
of the basic notions of set theory: operations on sets, the notions of
cardinal number and the transfinite inductiomn: It does, however, assume
a certain mathematical sophistication on the part of the reader.

All the mathematical knowledge necessary to understand the infin-
itistic methods of metamathematics is presented in Part One (Chapters I-1V).
The reader will find there a brief exposition of the elementary ideas of
topology and algebra, and an exposition of a part of lattice theory.
The material contained in Part One was chosen entirely from the point
of view of its application to metamathematics and it represents the
minimum necessary to understand Parts Two and Three, which are con-
cerned with the metamathematics of formalized theories based on classical
logic or non-classical logics. Chapters ILI and IV can be omitted altogether
by the reader interested only in classical logic. Chapter V constitutes
an intuitive introduction to the technique of formalization of mathe-
matical theories. It also contains a general definition of logic. Chapter VI
is indispensable to the understanding of all the succeeding chapters.
It contains the theory of the basic research tools in metamathematics: the
interpretation of formulas as mappings and the construction of algebras
by identification of equivalent formulas. Chapters VIL and VIIT deal
with elassical logic, Chapters IX and X with intuitionistic logic,
and Chapter XI with positive and modal logic. Chapters IX and X
can be read separately (after Chapters I-VI) irrespective of Chapters VII
and VIIL. In order to make things easier for the reader, we often give
complete proofs in Chapters IX and X even when they are simila‘g%p
the proofs of analogous theorems in classical logic. Positive and modal
logics, on the other hand, have been treated rather superficially in
Chapter XI and the proofs of theorems analogous. to those of classical
and intuitionistic logic have been omitted.

This book is addressed only to mathematicians and students of ma-
thematics interested in the logical aspects of mathematics and the ma-
thematical aspects of logic. For this reason the material illustrating
logical problems given in the introductory Chapter V is taken only from
mathematics. The philosophical aspects of logic and mathematics are
completely omitted as foreign to the mathematical character of the book.
Only in § 1 of Chapter IX is there a short summing up of the basic ideas
which led to the rise of intuitionistic logic.

The inclusion of two chapters on intuitionism is not an indication
of the authors’ positive attitude towards intuitionistic ideas. Intuitionism,
like other non-classical logics, has no practical application in mathe-
matics. Nevertheless many authors devote their works to intuitionistic
logic. On the other hand, the mathematical mechanism of intuitionistic
logic is interesting: it is amazing that vaguely defined philosophical ideas



Preface 9

concerning the notion of existence in mathematics have led to the creation
of formalized logical systems which, from the mathematical point of view,
proved to be equivalent to the theory of lattices of open subsets of topo-
logical spaces. Finally, the formalization of intuitionistic logic achieved
by Heyting and adopted in this book is not in agreement with the philo-
sophical views of the founder of intuitionism, Brouwer, who opposed
formalism in mathematics. Since in treating intuitionistic logic we have
limited ourselves to problems which are directly connected with general
algebraic, lattice-theoretical and topological methods employed in this
book, we have not included the latest results of Beth and Kreisel con-
cerning other notions of satisfiability than the algebraic notion of satis-
fiability which we have adopted.

We have given very little space to set-theoretical and semantic
antinomies. We believe that antinomies should be relegated to the history
of mathematics and that the material given to the reader should be in
a form free from errors in the interpretation of the notion of set, etc. Simi-
larly, in the theory of functions no one now uses the vague and inconsis-
tent interpretation of the idea of function given hundreds of years ago.

The terminology employed in this book differs in several places
from the terminology generally used. We have tried to unify the mathe-
matical and metamathematical terminology in parallel problems. Thus,
for example, in place of ‘“the complete theory” we write ‘“‘the maximal
theory”, since this notion is parallel to the notion of a maximal filter
in lattice theory. Besides, the word ‘complete” is too often used with
other meanings. We also call attention to the fact that the word “model”
in this book has another more general meaning than that usually adopted
in works on logic. Following Bourbaki we say ‘‘ordered set’” in place
of “partially ordered set”.

Following Nobeling, we use the term ‘‘topological Boolean algebra”
in place of ‘“closure algebra”, which is employed by many authors.
Because of its applications to intuitionistic logic, in this book the interior
operation is first in importance, before the closure operation. For this
reason we have adopted as the axioms of topological spaces and topo-
logical Boolean algebras the axioms dual to the well known Kuratowski
axioms. Consequently, it has been difficult for us to employ the name
tclosure algebra’ for the notions defined by the word ‘“interior” and
not by the word ‘“closure”. The name ‘‘topological Boolean algebra”
has seemed more convenient also for the reason that it does not intro-
duce any asymmetry in the duality of the basic notions of topology.

We use the same symbols U, N, — to stand for set operations,
lattice-theoretical operations and the corresponding propositional con-
nectives in order to emphasize the close reciprocal relation between them.
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This does not lead to misunderstanding anywhere and very much sim-
plifies the translation of logical notions into the language of set theory
and lattice theory.

Theorems within a given chapter are referred to by their numbers.
Theorems quoted from other chapters have, in addition, Roman numerals
specifying the chapters in which they appear. Similarly, formulas within
a given section are referred to by their numbers, those from the same
chapter but from other sections have the number of the paragraph added,
and those from other chapters are marked by Roman numerals repre-
senting the chapter, the number of the section and that of the formula.

We wish to thank Professor A. Mostowski for his valuable advice
on bibliographic matters. We also wish to thank Dr A. Biatynicki-Birula,
who read the manuscript of the book and whose comments helped us
to improve the text in many places. We also thank Dr T. Traczyk for
his help in reading the proofs.

H. Rasiowa  R. Sikorski

Warsaw, 1962.



PART ONE
LATTICES

CHAPTER I

PRELIMINARY TOPOLOGICAL, ALGEBRAIC
AND LATTICE-THEORETICAL NOTIONS

§ 1. Sets, mappings, Cartesian products. We assume that the reader
is familiar with the fundamental notions from set theory (1). We recall
here only the basic notation.

We write a e A if a is an element of a set A, and otherwise a¢ A.
If every element of a set A belongs to a set B, we write A C B and we
say that A is a subset of B. The relation C is called inclusion.

The empty set is denoted by 0.

For any sets 4, B, the symbol 4 v B (A4 ~ B) will denote the union
(the intersection) of A and B, i.e. the set of all elements belonging to
at least one of the sets (to both the sets) A, B. More generally, | JierA:
(MierAs) will denote the union (the intersection) of sets A, where te T,
i.e. the set of all elements belonging to at least one of the sets (to each
of the sets) Ay, feT.

If A ~B=0, the sets 4, B are said to be disjoint.

The difference of sets A, B, i.e. the set of all elements of A which
do not belong to B, will be denoted by A— B.

In applications we shall often consider only subsets of a fixed set X.
The set X will then be called a space, and the difference X —A (where
A C X) will be called the complement of A and denoted by —A. Hence,
if A, BCX, then A—B =4 ~—B.

The words mapping, function, transformation always have the same
meaning. We write

f: X—=Y
to indicate that f is a mapping defined on X with values in Y. The set .X
is then called the domain of f. The set Y is called the counter-domain of f.

Usually, if f denotes a mapping, then f(x) is used to denote the
value of f at a point 2. Sometimes we shall also write fz and f. instead
of f(x).

(1) For a detail exposition of set theory see e.g. Fraenkel [2], Hausdorff [1],
Kuratowski and Mostowski [1], Sierpinski [1], [3].
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If f is a mapping of a set X into a set Y, and AC X, BC Y, then
f(4) denotes the set of all elements f(x) where xz € 4, and f~(B) denotes
the set of all elements x ¢ X such that f(z) e B. The sets f(A4) and f~1(B)
are called the image of A and the counter-image of B, respectively.
If f(A) = B, we say that f maps the set A onfo the set B. If f is one-
to-one, i.e. if f(x,) = f(=x,) implies @, = x,, then f~! denotes the mapping
inverse to f, i.e. the mapping from f(X) onto X, such that f(y)==2
if and only if f(x) =y. If f: X—>Y and ¢g: Y —~Z, then gf: X —+Z denotes
the superposition of f and g, ie. gf(x) = g(f(x)) for all ze X. If f is
a mapping defined on a set X, ¢ is a mapping defined on a set X,C X and

g(x) =f(x) for all =xelX,,

then f is called an extension of g over X and g is called the restriction
of f to X,.

Functions defined on the set of all positive (or non-negative) inte-
gers are called (infinite) sequences. Functions defined on a set of integers
1, ..., m are called finite sequences or more precisely: m-element sequences.
If a, denotes the element assigned to an integer n, then the sequence
is denoted by {a,} or—in the case of a finite sequence—by {a,, ..., an}.

More generally, if for every ¢ in a non-empty set 7', a; is an element
of a set A, then the function which assigns the element a; to every te T
will be denoted by {a:}ter or simply by {a:}.

The symbol Pier A; will denote the Cartesian product of sets A
(teT), i.e. the set of all mappings a = {at}er such that a;e A; for
every t e« T. In particular, Pp-1An (Pn-14,) will denote the set of all
m-element sequences (of all infinite sequences) {a,} such that a, e An
forn=1,2,..,m (for n = 1,2, ...). Instead of Pn-1 An (Pn-14x) we shall
also write A, X ... X Am (A; XAy X ...).

If all the sets are equal,

Ar=A4 for every teTl,

we write A7 instead of Pier A:. In other words, AT is the set of all
mappings from 7'into 4. We also write A™ and A% instead of 4 x ... x A
(m times) and A x A X ..., respectively.

Mappings f: A™—-A will often be called operations in A. .

If, for every te T, R is a class of subsets of a set X, then Pier$;
will denote the class of all sets Pier A: such that A; e & for every teT.
By definition, ﬁleT K: is a class of subsets of Pier X:.

We suppose that the reader is familiar with the notion of cardinal
and ordinal numbers and of transfinite induction. The cardinal number

of a set X (i.e. the power of X) will be denoted by X. The cardinal
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number of enumerable or countable sets (i.e. of one-to-one images of the
set of all positive integers) is denoted by ,.

§ 2. Topological spaces (1). A topological space is a set X in which,
with every set A C X, there is associated a set IA C X in such a way that

(i) I(A~B)=14~1IB,
(iy) IAC A4,

(is) A =14,

(i,) IX = X.

More precisely, a topological space is a pair {X, I} where X is a set and I
satisfies (i;)-(i,).

An operation I satisfying (i,)-(i,) is called an interior operation. For
every set A C X, the set IA is called the interior of the set A.

The set —I—A (i.e. the set X —T(X —A)) is called the closure of A
and denoted by CA (4 C X). By definition,

(1) CA=-I1-4 and I4Ad—=-C—4A.

It follows immediately from (i,)-(i,) that the operation C satisfies
the conditions (2)

(ey) C(AuB)y=CAUCB,
(ey) ACCA,

(c3) CC4 =CA,

(cq) Co=0.

Notice that, conversely, if with every set 4 C X there is associated
a set CAC X in such a way that conditions (c1)-(eq) are satisfied, then
the operation I defined by the second of equations (1) satisfies condi-
tions (i;)-(i;) and the first of equations (1) also holds.

Any operation C satisfying (c,)-(¢,) is called a closure operation.

It follows immediately from (i;) and (c,) that, for arbitrary subsets
A, B of a topological space X,

(2) ACB implies IACIB and CACCB.

A subset A of a topological space X is said to be open (closed) in X
if 4 =14 (it A = CA4). By (1), a set A is open (closed) if and only if
its complement —A4 is closed (open).

(*) Yor a detail exposition of the theory of topological spaces see e.g. Kelley [1],
Kuratowski [3].

(*) Axioms (c,)-(c,) are due to Kuratowski [1].
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By (ig) (by (¢s)) the interior (the closure) of any set A is open (closed).
Tt follows from (i), (¢,) and from (ec,), (i,) that the empty set 0 and the
whole space X are both open and closed.

Observe that if B is open, then for every set 4

(3) BCA if and only if BCI4

on account of (i,), (i;) and (2). This implies that IA is the greatest open
subset of 4. Analogously, if B is closed, then for every set A

(4) ACB if and only if CACB

on account of (¢,), (¢;) and (2). This implies that CA is the least closed
set containing A.

By (i;) (by (e,)) the intersection (the union) of two open (closed)
sets is open (closed). By an easy induction we infer that the intersection
(union) of any finite sequence of open (closed) sets is open (closed).

If A is closed (open) and B is open (closed) then 4—B is closed
(open) since A—B = A4 ~—B.

The union | Jier A¢ (the intersection [ser 4¢) of any number of
open (closed) sets A is open (closed). In fact, if A: is open, then by (2),
A, =14, CIUter A; and consequently (Jier 4¢CIUter A¢; the con-
verse inclusion follows from (i;). The analogous statement for closed sets
can be proved similarly or can be obtained from the case of open sets
just proved when we pass to complements.

A class B of open subsets of X is said to be a basis of X if every
open subset of X is the union of some sets belonging to B.

A class B, of open subsets of X is said to be a subbasis of X if the
class B composed of the empty set 0, the whole space X, and of all the
finite intersections B, ~ ... ~n B, where By, ..., B, € B, is a basis of X.
Of course, if a subbasis B, contains 0 and X and if B, B, € B, implies
B, ~ B, € By, then B is a basis of X. ’

The following simple theorem is often used to define an interior
operation I in any set X.

.

2.1. For every class B, of subsets of a set X there ewists exactly one
interior operation 1 in X such that B, is a subbasis of the topological
space {X,I}.

Let B be the class composed of the empty set 0, the whole space X
and of all the finite intersections B; A ... n By where B, ..., By eB,.
For every set A C X, let IA be the union of all sets B e B such that
BC A. Properties (i), (is), (i,) follow immediately from ‘the definition
of 1. Property (i,) follows from the fact that B, n B, ¢ B for By, B, ¢ B.
Observe that B is a basis of the topological space X just defined. Thus
B, is a subbasis of X.
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Conversely, if I is an interior operation in X such that B, is a sub-
basis of {X, I}, then the class B defined above is a basis. Consequently,
the open set I4 is the union of all sets B ¢ B such that B C I4. But sets
in B are open, and for open B the inclusion B C I4 holds if and only
if BC A (see (3)). Thus I4 is the union of all sets B € B such that BC 4,
i.e. the interior operation I coincides with the interior operation defined
in the first part of the proof of 2.1. This proves the uniqueness of I

For instance, let X be the set of all real numbers. Take as B, the
class of all intervals a < & < b, the empty set included. By 2.1 there
exists only one interior operation I in X such that B, is a subbasis.
We shall always consider the set of all real numbers as a topological
space with the interior operation I. Observe that B,is also a basis of X.
A set 4 is open in X if and only if it is a finite or enumerable union
of open intervals or if it is empty. Note that the enumerable class of all
intervals a < & < b with rational a and b (the empty set included) is also
a basis for X.

Let X be any topological space. For arbitrary sets A, BC X we
have, by (i) and (1),

I(AuB)~nI-BCIA,
that is,
(5) I(4 v B)CIA v CB. ht
Consequently, by (1) and (i),
I(AvB)=II(Av B)CI(IA v CB).
Replacing 4 and B in (5) by CB and I4 respectively, we obtain

I(I4 v CB)CICBu CIA .
Consequently

(6) I(4v B)CCI4 vICB.

A subset 4 of a topological space X is said to be dense provided
C4A = X. A set A is said to be a boundary set provided its complement
—A is dense, i.e. 14 = 0.

A set A is said to be nowhere dense provided its closure CA is a bound-
ary set, i.e. ICA = 0.

If a set A is dense and A C B, then B is also dense, by (2). Conse-
quently, each subset of a boundary set is a boundary set. Each subset
of a nowhere dense set is nowhere dense. Each nowhere dense set is
a boundary set. A closed set is nowhere dense if and only if it is a bound-
ary set.

4 is a boundary set if and only if it does not contain a non-empty
open set B (i.e. if B—A - 0 for every open set B # 0). In fact, if B is

[T
I35
b, 0 A

=




16 CHAPTER I. Preliminary notions

open -and BC A4, then B =IBCIA; hence, if B # 0, then I4 #0,
i.e. A is not a boundary set. Conversely, if 4 is not a boundary set,
then B = I4 is an open non-empty subset of A.

A set A is nowhere dense if and only if CA contains no open non-
empty set, i.e. if B—CA # 0 for every open set B 7 0.

For instance, for every set A, the set A—IA is a boundary set.
In fact, I(4—I14)C A—IA by (i;). On the other hand, I(A-14)CI4
by (2). Hence I(A—14) = 0.

Since CA—A = (—A)—I(—A4), we infer that, for every set A4,
the set CA— A is a boundary set. Hence, for every open set 4, the set

CA—-4

is nowhere dense since it is a closed boundary set.

It follows immediately from (6) that the union of a boundary set
and a nowhere dense set is boundary. Hence, by (c;), the union of two
(and consequently of an arbitrary finite number of) nowhere dense sets
is nowhere dense.

A set A is said to be of the first category if it is the union of a se-
quence of nowhere dense sets. The union of any sequence of sets of the
first category is also of the first category. Every subset of a set of the
first category is also of the first category.

A topological space X is said to be compact if, for every indexed
set {A:}er of open subsets, the equation X = ez A+ implies the exist-
ence of a finite set T, C T such that X = | Jser, 4¢:. Replacing open sets
by their complements we infer that a topological space X is compact
if and only if, for any indexed set {B:¢}ier of closed subsets, the equation
(Mter B: = 0 implies (ier, B: = 0 for a finite set T, (in other words:
if the intersection of every finite number of closed subsets B is non-
empty, then the intersection of all B is non-empty).

If X is a compact space, the A; are open subsets and B is a closed
subset, then the inclusion B C | Jier A implies B C |ier, 4¢ for a finite
set T,C 7. In fact, we have X = (—B) v Uier 4¢. Therefore, by com-
pactness, X = (—B) u Uier, 4¢ for a finite set T,C T, i.e. BC Uter, As.

By passing to complements we infer from the last remark that if X
is a compact space, A; are closed subsets and B is an open subset, then
the inclusion (\iez A;C B implies (\ter, A:C B for a finite set T, C T.

A topological space X is said to be a T,-space if, for every pair of
distinet points x,y, there exists an open set containing exactly one of
them.

A topological space X is said to be a T;-space if, for every pair of
distinet points @, y, there is an open set A such that x e A and y¢ A.
A topological space X is a Ty-space if and ouly if every one-element



