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This is an undergraduate textbook on the physics of electricity,
magnetism, and electromagnetic ficlds and waves. It is written
mainly with the physics student in mind, although it will also
be of use to students of electrical and electronic engineering.
The approach is concise but clear. The authors have assumed
that the rcader will be familiar with the basic phenomena;
however, they have set out the theory in a completely self-
contained and coherent way.

After a short mathematical prologue, the theory of electricity
and magnctism, and the relationship between them, is de-
veloped. The relationship between the microscopic structure of
matter and the macroscopic electric and magnetic fields is
stressed throughout, and the theory is developed to the point
where the reader can appreciate the beauty and coherence of
the Maxwell cquations which describe these fields. The theory
is then applied to a wide range of topics from the properties of
materials, including scmiconductors and superconductors, to
the gencration of radiation by clectriccurrents. A final chapter
makes the conncction between Maxwell’s equations and the
special theory of refativity. Each chapter ends with a set of
problems, answers to which arc also provided.

The authors have extensive experience of teaching physics to
undergraduate students at the University of Bristol. The
clarity of the mathematical treatment they provide will
facilitate a thorough grasp of the subject, and makes this a
highly attractive text.



Preface

This is an undergraduate textbook on the physics of electricity, magnetism,
and electromagnetic fields and waves. It is written mainly with the physics
-student in mipd, although it will also be of use to students of electrical and

electronic engineering. We have aimed to produce a concise text which
emphasises the meaning and significance of the concepts that appear in the
theory, and the overall coherence and beauty of the Maxwell equations.

The theory is set out in a self-contained way, but we assume that the
reader will already have some knowledge of the basic phenomena of
electricity and magnetism. (At the University of Bristol there is an
established tradition of demonstration experiments in the introductory
first year physics lectures.) We also assume some familiarity with the
mathematics of scalar and vector fields, and the properties of the V¥
operator. The basic theorems are set out for reference in the Mathematical
Prologue. The Dirac d-function is introduced in a non-rigorous way on the
first page of Chapter 1, and used freely : in our experience, physics students
readily accept this as an obviously useful mathematical device. A few
other mathematical tools are developed in the text, as and when they are
needed. To avoid impeding the flow of the main argument, the technical
details of mathematical manipulations are sometimes relegated to the
problems.

The relationship between the microscopic structure of matter and the
macroscopic fields which are the main concern of the text is stressed from
the start, albeit from a classical standpoint. Not only is this basic for an
understanding of the theory, but it is important to appreciate the
limitations on the theory’s domain of applicability. For example, the
important technology of electronic devices lies at the boundary between
what is clearly microscopic and what is clearly macroscopic; an
appreciation of the nature of the macroscopic fields in materials is
essential to an understanding of the underlying physics.

We arrive at the Maxwell equations in Chapter 5, as abstractions from

xi



xit Preface

laboratory experiments. Subsequent chapters cover a wide range of
applications, from the macroscopic description of the electric and
magnetic properties of material media, including superconductors, to the
generation of radiation by electric currents. The final chapter makes the
connection between the Maxwell equatlons and the special theory of
relativity.

We envisage our book as one to work from. The problems following
each chapter illustrate an 1 extend the text, and form an essential part of
that work.

We are grateful to Bob Chambers, David Gibbs, Brian Pollard, and
many other colleagues, who have helped clarify our presentation of the
subject at many points. We thank Margaret James who worked valiantly
on the typescript.

W. N. Cottingham
D. A. Greenwood



Units, constants, and formulae

SI units

Name Symbol  Basic units
electric current ampere A A
electric charge coulomb C sA
potential difference volt \ kgm?s?®A!
capacitance farad- F kgt m2st A?
resistance ohm Q kgm?s3 A2
magnetic field tesla T kgs?A!
magnetic flux weber Wb kgm?s 2A!
inductance henry H kgm?s2A?

g~ 8.85x 1072 kg  m3s* A?
My =4nx1077kgms2A*

(o) ' =%, ©¢=299792458 ms™!

Physical constants

Proton charge e 1.60218 x 1071 C
Electron mass m,  9.1094 x 107*' kg
Proton mass m, 1.67262 x 107*7 kg
Boltzmann’s constant kg 1.3807 x 107** J K !
Avogadro’s number N, 6.0221 x 10*®* mol™’
Planck’s constant h 6.6261 x 1073 J s

leVax160218x107'%}

Xii



Xiv Units, constants, and formulac

Notation

r. k. ctc,, denote vectors (x,v,2), (k.k,.k), and r = v} = (x"'+y"+:“)5.
= r/r, cle.
Spherical polar coordinates are denoted by (r,0, ¢).
. . . g 'N
Cylindrical polar coordinates are denoted by (p. 4. 2}, where p = (x% + y*).
A I I o® Q Q ] o

|
Vi= 4 st = bt g sinl e g e
: ox? Uy‘+ﬂ:“ ror? +r'smt’IO(I 0(I+r"sm‘()a¢l

Vector identities

u, v denote scalar functions: F, G dcnote vector functions.

v K
- '. “a'[ oz

“k

. o Qu Ou Oui+0u,+0u
= | - = - —e -
ox Oyj 0z

Ox Ty oz

F = i
v ﬂ\+0y+1:

aF, OF,  OF Vsz(DF OF, OF, OF, OF, afl)
’ Oy O‘ oz Ox'ox Op

V(VxF)=0, VxVu=0

V x(V x F) = W(V-F)—-V°F, where V*F = (V*F,,V*F,, V*F)

V(uv) = uVv+ vWu

VA(uF)=F -Vu+uV F

V(FxG)Y=G(VxF)-F-(VxG)

Vx(uF) = VuxF+uV xF

CVXx(FxG)=FV - G)—-GV-F)+(G-V)F—(F- V)G

Useful results: V-r =3, V(") = nr* 'f
If a is a constant vector, V(a‘r) =a, (a-V)r=a.



Units, constants, and formulac

Maxwell’s equations
V-E =p/e,

cE
VxB-—u,t, (3'" = 1,J
of

V-B=0
Al
V x E+f§ =0
o
In material media, these become
v ) D = pl’rt'('
on
VxH -"‘5" = Jfrw
V-B=0
oB

VxE+— =
XP+81 0

where
D=¢E+P,

H = (B/y)—M

Xv



Glossary of symbols

A(r), A(r, ) vector potential

a acceleration

a, Bohr radius

B magnetic field

B, B,,, B, critical magnetic fields

C capacitance

D =¢,E+P electric displacement

E, E,, macroscopic, atomic electric field
& electromotive force (e.m.f.), energy
F force

KF(r) §1.2 averaging function

F magnetic flux

H = (B/y)-M

I electric current

J, J,, macroscopic, atomic current density
K =2wr/c absorption coeflicient

k wavevector, |k| = 2n/4

L. angular momentum vector

L length, §1.2 averaging length

L, L, self, mutual inductance

dl line element

M magnetisation

m magnetic dipole moment

N Poynting vector

N number per unit volume

A unit normal to surface

n = Re(y'¢,) refractive index

P polarisation

P  power

p electric dipole moment

xvi



Glossary of symbols xvii

electric charge
electric quadrupole tensor
resistance, § 12.7 reflection coefficient
element of surface
surface area
temperature, § 12.7 transmission coefficient
critical temperature
ficld energy
volume, potential difference
W work function
Z, characteristic impedance

WANNLgE X0

a atomic polarisability

y damping constant

J skin depth

& = 14y, relative permittivity (dielectric constant)

Kk =1Im(47¢,)

A London penetration depth

A wavelength

# magnetic moment of molecule

#, = 1+yx, relative permeability

v frequency

P, Pe» P Macroscopic, electronic, atomic charge density
o surface charge density, electrical conductivity, cross-section
t collision time, damping time

d(r), ®,(r) macroscopic, atomic electrostatic potential
d(r,7) scalar potential

@, §145 flux quantum

¢ angular coordinate, phase angle

x(®), x(r. 1) §9.1, §16.1 gauge function

X. clectric susceptibility .

X, ~magnetic susceptibility

dQ element of solid angle

«w angular frequency

w, plasma frequency
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Mathematical Prologue

In the chapters which follow, we assumc that you are already familiar with
the basic mathematics of scalar and vector fields in three dimensions, the
properties of the V operator, the integral thcorems which hold for these
ficlds, and so forth. In this prologue, we remind you of some basic
definitions, and outline (without proof) those mathematical theorems of
which we shall make extensive use. We also establish our notation and
sign conventions.

We envisage space filled with electromagnetic fields, and at any instant
we describe these fields mathematically using functions which may be
scalar functions of position (like the potential ®(r)) or vector functions of
position (like the clectric ficld E(r)). We shall assume that the functions
which appear in the theory are continuous, and have derivatives existing
as required, except perhaps at special points or on special surfaces.
Singularities in the mathematics will usually correspond to singularities in
the physics. For example, the electrostatic potential of a point charge ()
at the origin is Q/4ne, r, and this function satisfies our conditions except
at r = 0, which is the position of the point charge.

We sometimes focus on these fields in himited regions of space, say
inside a volume ¥ enclosed by a surface S, or over a surface S(I') boundcd
by a curve T'. )

P.1 Volume integrais

Volume integrals will often arise naturally in the theory, for example when
we calculate the total charge or total energy in some volume V of space.
The volume integral of a function f{r) is defined by

f/(mw: timit ( 3 fir,) %), (P.1)

where the volume V is dissected into elements 3V, and r, lies in 6V,. The
linear dimensions of the &V, go to zero in the limit.



2 Mathematical prologue

We might for example take d¥ = dxdyd:z so that

fj(r)dV= fffj(x,y,z)dxdydz,

or work in spherical.polar coordinates, and take d¥ = r’sin 8drd@d¢,
or use any other coordinate system which is convenient for the problem
under discussion. However, we wish to emphasise the meaning of integrals,
rather than techniques for their evaluation. For practical purposes, their
values can always be found to any required accuracy by direct
computation of approximating sums (see the definitions P.1-P.5).

P.2 Surfaces and surface integrals

A closed surface S, or an open surface S(I'), can be dissected into
elements, as is indicated in Fig. P.1. If the surface is smooth, and the
elements are sufficiéntly small, each element can be approximated by an
element of a plane. Two important properties can be defined for a plane
surface element : the first is its area 45, and the second a unit vector i that
is normal to the plane. It is sometimes useful to consider the surface
element as itself a vector 88 = A4S, of magnitude JS, pointing in the
direction i.
The area of a surface is defined to be:

area = f ds = limit( ) 4S), (P2
LIS ]

where the linear dimensions of the JS, go to zero in the limit.
In a similar way we can define integrals of functions over surfaces:

_ J- A)dS = limit( I fir,) 5S), (P.3) |

where 1, is a point in 48,

The case when f{r) = F(r)-# often occurs in physical theories, for
example when we consider the flow of electric charge or energy across a
surface. We may conveniently write

fF'ﬁdS:-:j F-ds.
S S

It is important to make rules which specify the direction of the unit
normal #.

For a surface S enclosing a volume V we always take the direction of
fi to be pointing outwards from the volume (Fig. P.1).

For a two-sided surface S(I'), bounded by a curve I', we relate the
direction of #i to the sense in which we go round I by a ‘right-hand’ rule



