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Preface to the Classic Edition

This is the first of four books I have written; the one I worked the hardest on;
and the one I am fondest of. It marked my goodbye to mathematics and
probability theory. About the time the book was written, I left UCLA to go into
the world of applied statistics and computing as a full-time freelance
consultant.

The book went out of print well over ten years ago, but before it did a
generation of statisticians, engineers, and mathematicians learned graduate
probability theory from its pages. Since the book became unavailable, I have
received many calls asking where it could be bought and then for permission to
copy part or all of it for use in graduate probability courses.

These reminders that the book was not forgotten saddened me and I was
delighted when SIAM offered to republish it in their Classics Series. The
present edition is the same as the original except for the correction of a few
misprints and errors, mainly minor.

After the book was out for a few years it became commonplace for a
younger participant at some professional meeting to lean over toward me and
confide that he or she had studied probability out of my book. Lately, this has
become rarer and the confiders older. With republication, I hope that the age
and frequency trends will reverse direction.

Leo Breiman
University of California, Berkeley
January, 1992



Preface

A few years ago I started a book by first writing a very extensive preface. I
never finished that book and resolved that in the future I would write first the
book and then the preface. Having followed this resolution I note that the result
is a desire to be as brief as possible.

This text developed from an introductory graduate course and seminar in
probability theory at UCLA. A prerequisite is some knowledge of real variable
theory, such as the ideas of measure, measurable functions, and so on.
Roughly, the first seven chapters of Measure Theory by Paul Halmos [64] is
sufficient background. There is an appendix which lists the essential
definitions and theorems. This should be taken as a rapid review or outline for
study rather than as an exposition. No prior knowledge of probability is
assumed, but browsing through an elementary book such as the one by William
Feller [59, Vol. I], with its diverse and vivid examples, gives an excellent
feeling for the subject.

Probability theory has a right and a left hand. On the right is the rigorous
foundational work using the tools of measure theory. The left hand “thinks
probabilistically,” reduces problems to gambling situations, coin-tossing,
motions of a physical particle. I am grateful to Michel Loeve for teaching me
the first side, and to David Blackwell, who gave me the flavor of the other.

David Freedman read through the entire manuscript. His suggestions
resulted in many substantial revisions, and the book has been considerably
improved by his efforts. Charles Stone worked hard to convince me of the
importance of analytic methods in probability. The presence of Chapter 10 is
largely due to his influence, and I am further in his debt for reading parts of the
manuscript and for some illuminating conversations on diffusion theory.

Of course, in preparing my lectures, I borrowed heavily from the existing
books in the field and the finished product reflects this. In particular, the books
by M. Logéve [108], J. L. Doob [39], E. B. Dynkin [43], and K. Ito and H. P.
McKean [76] were significant contributors.

Two students, Carl Maltz and Frank Kontrovich, read parts of the
manuscript and provided lists of mistakes and unreadable portions. Also, I was
blessed by having two fine typists, Louise Gaines and Ruth Goldstein, who
rose above mere patience when faced with my numerous revisions of the “final
draft.” Finally, I am grateful to my many nonmathematician friends who
continually asked when I was going to finish “that thing,” in voices that could
not be interminably denied.

Leo Breiman
Topanga, California
January, 1968
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CHAPTER 1

INTRODUCTION

A good deal of probability theory consists of the study of limit theorems.
These limit theorems come in two categories which we call strong and weak.
To illustrate and also to dip into history we begin with a study of coin-
tossing and a discussion of the two most famous prototypes of weak and
strong limit theorems.

1. n INDEPENDENT TOSSES OF A FAIR COIN

These words put us immediately into difficulty. What meaning can be
assigned to the words, coin, fair, independent ? Take a pragmatic attitude—all
computations involving n tosses of a fair coin are based on two givens:

a) There are 2" possible outcomes, namely, all sequences n-long of the two
letters H and T (Heads and Tails).

b) Each sequence has probability 2—".

Nothing else is given. All computations regarding odds, and so forth, in
fair coin-tossing are based on (a) and (b) above. Hence we take (a) and (b)
as being the complete definition of » independent tosses of a fair coin.

2. THE “LAW OF AVERAGES”

Vaguely, almost everyone believes that for large n, the number of heads is
about the same as the number of tails. That is, if you toss a fair coin a large
number of times, then about half the tosses result in heads.

How to make this mathematics? All we have at our disposal to mathe-
matize the “law of averages” are (a) and (b) above. So if there is anything
at all corresponding to the law of averages, it must come out of (a) and (b)
with no extra added ingredients.

Analyze the 2" sequences of H and 7. In how many of these sequences
do exactly k heads appear? This is a combinatorial problem which clearly
can be rephrased as: Given n squares, in how many different ways can we
distribute k crosses on them? (See Fig. 1.1.) For example, if n = 3, k = 2,
then we have the result shown in Fig. 1.2, and the answer is 3.

To get the answer in general, take the k crosses and subscript them so
they become different from each other, that is, +;, +3,..., +, Now we

1



2 INTRODUCTION 1.2

(L L CEOEETE
T

may place these latter crosses in n squares inn(n — 1) - -+ (n — k + 1) ways
[+, may be put down in n ways, then +, in (» — 1) ways, and so forth].
But any permutation of the k subscripted crosses among the boxes they
occupy gives rise to exactly the same distribution of unsubscripted crosses.
There are k! permutations. Hence

Proposition 1.1. There are exactly
n!
T k! (n — k)!

sequences of H, T, n-long in which k heads appear.

an

Simple computations show that if » is even, ,C; is a maximum for
k = nf2 and if n is odd, ,C; has its maximum value at k = (n — 1)/2 and
k =+ 1)2.

Stirling’s Approximation [59, Vol. I, pp. 50 ff.]
1.2) n! = e "n" \/27n(l + €,),
where €, — 0 as n — co.

We use this to get

3 c @ _ e 2 (2n)2"/4mn
’ Ty e *"n*"(2mn)

1 +46,)

=L 45,
mn
where 6, — 0 as n — 0.
In 2n trials there are 22" possible sequences of outcomes H, T. Thus
(1.3) implies that £ = n for only a fraction of about 1 [N of the sequences.
Equivalently, the probability that the number of heads equals the number of

tails is about 1/\/ n for n large (see Fig. 1.3).

Conclusion. As n becomes large, the proportion of sequences such that
heads comes up exactly n/2 times goes to zero (see Fig. 1.3).

Whatever the “law of averages” may sayj, it is certainly not reasonable
in a thousand tosses of a fair coin to expect exactly 500 heads. It is not
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Figure 1.3 Probability of exactly k& heads in 2n tosses.

possible to fix a number M such that for n large most of the sequences have
the property that the number of heads in the sequence is within M of n/2.
For 2n tosses this fraction of the sequences is easily seen to be less than

2M/\/ — (forgetting d,,) and so becomes smaller and smaller.
To be more reasonable, perhaps the best we can get is that usually the
proportion of heads in n tosses is close to 4. More precisely—

Question. Given any € > 0, for how many sequences does the proportion
of heads differ from % by less than €?

The answer to this question is one of the earliest and most famous of the
limit theorems of probability. Let N(n, €) be the number of sequences
n-long satisfying the condition of the above question.

Theorem 1.4. lim, 2" N(n, €) = 1.

In other words, the fraction of sequences such that the proportion of heads
differs from % by less than € goes to one as n increases for any € > 0.

This theorem is called the weak law of large numbers for fair coin tossing.
To prove this theorem we need to show that

1.5 1im[l b3 ,,c,,} =1

n |27 k;|k/n—1/2] < €

Theorem 1.4 states that most of the time, if you toss a coin n times, the
proportion of heads will be close to 4. Is this what is intuitively meant by
the law of averages? Not quite—the abiding faith seems to be that no matter
how badly you have done on the first n tosses, eventually things will settle down
and smooth out if you keep tossing the coin.

Ignore this faith for the moment. Let us go back and establish some
notation and machinery so we can give Theorem 1.4 an interesting proof.
One proof is simply to establish (1.5) by direct computation. It was done this
way originally, but the following proof is simpler.
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Definition 1.6
a) Let Q, be the space cons1stmg of all sequences n-long of H, T. Denote
these sequences by w,, w,, . .., wy, N = 2",

b) Let A, B, C, and so forth, denote subsets of Q,. The probability P(A) of
any subset A is defined as the sum of the probabilities of all sequences in A,
that is,

P(A) = 27" (number of sequences in A),

equivalently, P(A) is the fraction of the total number of sequences that are
in A.

For example, one interesting subset of Q, is the set 4, of all sequences such
that the first member is H. This set can be described as ‘“‘the first toss results
in heads.” We should certainly have, if (b) above makes sense, P(4,) = 3.

This is so, because there are exactly 2"~ members of 2, whose first member is
H.

c) Let X(w) be any real-valued function on Q,. Define the expected value of
X as

EX=3 X(w)‘-zl—”-

weQ,

Note that the expected value of X is just its average weighted by the prob-
ability. Suppose X(w) takes the value x; on the set of sequences 4, x, on 4,,
and so forth; then, of course,

EX = Z x;P(A)).
And also note that EX is an integral, that is,
E(@X 4+ BY) = «EX + BEY,

where «, B are real numbers, and EX > 0, for X > 0. Also, in the future
we will denote by {w; ---} the subset of Q, satisfying the conditions
following the semicolon.

The proof of 1.4 will be based on the important Chebyshev inequality.
Proposition 1.7. For X(w) any function on Q,, and any € > 0,

P(; X(@)] > ¢ < l EQCY).
Proof

P(w; [X| 2 €) = %(number ofw; X(w)| >e)= I i

{0; 1X[2€) 27
X(:") Ll xw)-L=lpc

1
(0;1X]=¢) € € wen, 2" 2

m
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Define functions X;(w), . . ., X,(w), S;(w) on Q, by
1 if jth member of w is H,

X{w) =
0 if jth member of wis T,

(1.8)
sn(m) = Xl(w) +oeor xn(w)a

so that S,(w) is exactly the number of heads in the sequence w. For practice,
note that

EX, = 0 P(w; firsttoss = T) + 1 P(w; first toss = H) = },
EX;X, = 0 P(w; either first toss or second toss = T)
+ 1- P(w; both first toss and second toss = H) = }
(since there are 2”2 sequences beginning with HH). Similarly, check that
if i # j, then
Xi— DX, — P =

1 on 2" !sequences,

—% on 2"!sequences,
EX; = HX; — 1 =0, i7]j

X —-d=} =>EX,—*=1

so that
Also,

Finally, write

S, - 2=3 0 -
so that
19) B3 - %) SE(3 06— b0%, - 1)

“lpx —pp=Ll
=BG - i

Proof of Theorem 1.4. By Chebyshev’s inequality,
2
P(w,' Su(@) _ |2 < ESan ="

€
Use (1.9) now to get

S (@) 1 1
: Pw;| 2= _1 -
(1.10) (w . zlze) <o
implying
limP(w; ﬁ@—llze) =0
n n 2

Since P(£2,) = 1, this completes the proof.



