<t
S
(V)
<
v
)
=
=

Jingshan Huang Ryszard Kowalczyk
Zakaria Maamar David Martin
Ingo Miiller Suzette Stoutenburg
Katia P. Sycara (Eds.)

Service-Oriented
Computing: Agents,
Semantics, and Engineering

AAMAS 2007 International Workshop, SOCASE 2007
Honolulu, HI, USA, May 2007
Proceedings

é Springer

Jingshan Huang Ryszard Kowalczyk
Zakaria Maamar David Martin

Ingo Miiller Suzette Stoutenburg
Katia P. Sycara (Eds.)

Service-Oriented
Computing: Agents,
Semantics, and Engineering

AAMAS 2007 Inte
Honolulu, HI, USA,
Proceedings

‘@ Springer

Volume Editors

Jingshan Huang
University of South Carolina, Columbia, SC 29208, USA
E-mail: huang27 @sc.edu

Ryszard Kowalczyk
Swinburne University of Technology, Hawthorn, VIC 3122, Australia
E-mail: rkowalczyk @ict.swin.edu.au

Zakaria Maamar
Zayed University, PO Box 19282, Dubai. United Arab Emirates
E-mail: zakaria.maamar@zu.ac.ae

David Martin
SRI International, Menlo Park, CA 94025-3493, USA
E-mail: martin@ai.sri.com

Ingo Miiller
Swinburne University of Technology, Hawthorn, VIC 3122, Victoria, Australia
E-mail: imueller@ict.swin.edu.au

Suzette Stoutenburg
The MITRE Corporation, Colorado Springs, Colorado 80910, USA
E-mail: suzette @mitre.org

Katia P. Sycara
Carnegie Mellon University, Pittsburgh, PA. 15213, USA
E-mail: katia@cs.cmu.edu

Library of Congress Control Number: 2007927059
CR Subject Classification (1998): H.3.5, H.3.3, H.3-4, 1.2, C.2.4

LNCS Sublibrary: SL 3 — Information Systems and Application,
incl. Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-72618-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-72618-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting. re-use of illustrations. recitation, broadcasting.
reproduction on microfilms or in any other way. and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9. 1965,
in its current version. and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services. Chennai. India
Printed on acid-free paper SPIN: 12066605 06/3180 543210

Preface

The global trend towards more flexible and dynamic business process integration
and automation has led to a convergence of interests between service-oriented
computing, semantic technology, and intelligent multiagent systems. In particu-
lar the areas of service-oriented computing and semantic technology offer much
interest to the multiagent system community, including similarities in system ar-
chitectures and provision processes, powerful tools, and the focus on issues such
as quality of service, security, and reliability. Similarly, techniques developed in
the multiagent systems and semantic technology promise to have a strong impact
on the fast-growing service-oriented computing technology.

Service-oriented computing has emerged as an established paradigm for dis-
tributed computing and e-business processing. It utilizes services as fundamen-
tal building blocks to enable the development of agile networks of collaborating
business applications distributed within and across organizational boundaries.
Services are self-contained, platform-independent software components that can
be described, published, discovered, orchestrated, and deployed for the purpose
of developing distributed applications across large heterogeneous networks such
as the Internet.

Multiagent systems are also aimed at the development of distributed ap-
plications, however, from a different but complementary perspective. Service-
oriented paradigms are mainly focused on syntactical and declarative definitions
of software components, their interfaces, communication channels, and capa-
bilities with the aim of creating interoperable and reliable infrastructures. In
contrast, multiagent systems center on the development of reasoning and plan-
ning capabilities of autonomous problem solvers that apply behavioral concepts
such as interaction, collaboration, or negotiation in order to create flexible and
fault-tolerant distributed systems for dynamic and uncertain environments.

Semantic technology offers a semantic foundation for interactions among
agents and services, forming the basis upon which machine-understandable ser-
vice descriptions can be obtained, and as a result, autonomic coordination among
agents is made possible. On the other hand, ontology-related technologies, ontol-
ogy matching, learning, and automatic generation, etc., not only gain in potential
power when used by agents, but also are meaningful only when adopted in real
applications in areas such as service-oriented computing.

This volume consists of the proceedings of the Service-Oriented Computing:
Agents, Semantics, and Engineering (SOCASE 2007) workshop held at the In-
ternational Joint Conferences on Autonomous Agents and Multiagent Systems
(AAMAS 2007). It also includes the four best papers selected from the Service-
Oriented Computing and Agent-Based Engineering (SOCABE 2006) workshop
held at AAMAS 2006. The papers in this volume cover a range of topics at the
intersection of service-oriented computing, semantic technology, and intelligent

VI Preface

multiagent systems, such as: service description and discovery; planning, compo-
sition and negotiation; semantic processes and service agents; and applications.

The workshop organizers would like to thank all members of the Program
Committee for their excellent work, effort, and support in ensuring the high-
quality program and successful outcome of the SOCASE 2007 workshop. We
would also like to thank Springer for their cooperation and help in putting this
volume together.

May 2007 Jingshan Huang
Ryszard Kowalczyk

Zakaria Maamar

David Martin

Ingo Miiller

Suzette Stoutenburg

Katia Sycara

Organization

SOCASE 2007 was held in conjunction with The Sixth International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2007) on May
14, 2007 at the Hawaii Convention Center in Honolulu, Hawaii.

Organizing Committee

Jingshan Huang, University of South Carolina, USA

Ryszard Kowalczyk, Swinburne University of Technology, Australia
Zakaria Maamar, Zayed University Dubai, United Arab Emirates
David Martin, SRI International, USA

Ingo Miiller, Swinburne University of Technology, Australia
Suzette Stoutenburg, The MITRE Corporation, USA

Katia Sycara, Carnegie Mellon University, USA

Program Committee

Esma Aimeur, University of Montreal, Canada

Stanislaw Ambroszkiewicz, Polish Academy of Sciences, Poland
Yacine Atif, United Arab Emirates University, United Arab Emirates
Youcef Baghdadi, Sultan Qaboos University, Oman

Djamal Benslimane, Université Claude Bernard Lyon 1, France
Jamal Bentahar, Concordia University Montreal, Canada

M. Brian Blake, Georgetown University, USA

Peter Braun, the agent factory GmbH, Germany

Paul A. Buhler, College of Charleston, USA

Bernard Burg, Panasonic Research, USA

Jiangbo Dang, Siemens Corporate Research, USA

Ian Dickinson, HP Laboratories Bristol, UK

Chirine Ghedira, Université Claude Bernard Lyon 1, France
Karthik Gomadam, University of Georgia, USA

Slimane Hammoudi, ESEO, France

Jingshan Huang, University of South Carolina, USA

Patrick Hung, University of Ontario, Canada

Nafaa Jabeur, University of Windsor, Canada

Jugal Kalita, University of Colorado at Colorado Springs, USA
Mikko Laukkanen, TeliaSonera, Finland

Sandy Liu, NRC Institute for Information Technology, USA
Peter Mork, The MITRE Corporation, USA

Nanjangud C. Narendra, IBM India Research Lab, India
Manuel Ninez Garcia, Universidad Complutense de Madrid, Spain

VIII Organization

Leo Obrst, The MITRE Corporation, USA

Julian A. Padget, University of Bath, UK

Terry Payne, University of Southampton, UK

Giovanna Petrone, Universita’ di Torino, Italy

Debbie Richards, Macquarie University, Australia

Marwan Sabbouh, The MITRE Corporation, USA

Quan Z. Sheng, The University of Adelaide, Australia

Pavel Shvaiko, University of Trento, Italy

Suzette Stoutenburg, The MITRE Corporation, USA

Eleni Stroulia, University of Alberta, Canada

Jie Tang, Tsinghua University, China

Philippe Thiran, University of Namur, Belgium

Huaglory Tianfield, Caledonian University Glasgow, UK
Willem-Jan van den Heuvel, Tilburg University, The Netherlands
Kunal Verma, Accenture Technology Labs Palo Alto, USA
Steve Wilmott, Universitat Politecnica de Catalunya, Spain
Soe-Tsyr Yuan, National Chengchi University Taipei, Taiwan

Albayrak, Sahin 49, 92

Botelho, Luis Miguel 1
Braun, Nicolas 49

Céaceres, César 132
Cissée, Richard 49

Dikenelli, Oguz 118

Ekinci, Erdem Eser 118
Endert, Holger 92

Fernandez, Alberto 78, 132
Groza, Adrian 160
Gilimiis, ngiir 118
Giircan, Onder 118
Hirsch, Benjamin 92
Inaba, Masumi 107

Jennings, Nicholas R. 16

Kardas, Geylani 118

Author Index

Kawamura, Takahiro 107
Kowalczyk, Ryszard 147
Kiister, Tobias 92

Letia, Ioan Alfred 160
Li, Hong Xia 63
Lopes, Anténio Luis 1

Ma, Yu-Fei 63
Marginean, Anca 160
Mizoguchi, Yumiko 107

Nagano, Shinichi 107
Nguyen, Xuan Thang 147

Ossowski, Sascha 78, 132
Payne, Terry R. 16

Stein, Sebastian 16
Sun, Pei 63

van Riemsdijk, M. Birna 31
Vasirani, Matteo 132

Wirsing, Martin 31

Table of Contents

Executing Semantic Web Services with a Context-Aware Service
EEXECUtION, AFEAG . 5505 55 s smpameing saemiamsis sHsHPEms Erams QMimstrs s
Antonio Luis Lopes and Luis Miguel Botelho

An Effective Strategy for the Flexible Provisioning of Service
WOrkflows . ..o
Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings

Using Goals for Flexible Service Orchestration
M. Birna van Riemsdijk and Martin Wirsing

An Agent-Based Approach to User-Initiated Semantic Service
Interconmection s :vssniasssims smsmssmems ims s o Ms sRIRA AT EF Fwis s
Nicolas Braun, Richard Cissée, and Sahin Albayrak

A Lightweight Agent Fabric for Service Autonomy
Yu-Fei Ma, Hong Xia Li, and Pei Sun

Semantic Service Composition in Service-Oriented Multiagent Systems:
A Filtering APPrOach: soas mimrimnsnssnsarsmsassmssmomisssasi®sas s
Alberto Fernandez and Sascha Ossowski

Towards a Mapping from BPMN to Agents..........................
Holger Endert, Benjamin Hirsch, Tobias Kister, and Sahin Albayrak

Associated Topic Extraction for Consumer Generated Media

ANalySIS .o
Shinichi Nagano, Masumi Inaba, Yumiko Mizoguchi, and
Takahiro Kawamura

An MAS Infrastructure for Implementing SWSA Based Semantic

I 1C) 1
Onder Giircan, Geylani Kardas, Ozgiir Giimiis,
Erdem FEser Ekinci, and Oguz Dikenelli

A Role-Based Support Mechanism for Service Description and
DISCOVETY .« o v oottt e e e e
Alberto Fernandez, Matteo Vasirani, César Caceres, and
Sascha Ossowski

WS2JADE: Integrating Web Service with Jade Agents................
Xuan Thang Nguyen and Ryszard Kowalczyk

16

31

49

63

78

X Table of Contents

Z-Based Agents

for Service Oriented Computing

Ioan Alfred Letia, Anca Marginean, and Adrian Groza

Author Index

Executing Semantic Web Services with a
Context-Aware Service Execution Agent

Anténio Luis Lopes and Luis Miguel Botelho

We, the Body, and the Mind Research Lab of ADETTI-ISCTE,
Avenida das For¢as Armadas, Edificio ISCTE, 1600-082 Lisboa, Portugal
{antonio.lopes, luis.botelho}@we-b-mind.org

Abstract. The need to add semantic information to web-accessible services has
created a growing research activity in this area. Standard initiatives such as
OWL-S and WSDL enable the automation of discovery, composition and
execution of semantic web services, i.e. they create a Semantic Web, such that
computer programs or agents can implement an open, reliable, large-scale
dynamic network of Web Services. This paper presents the research on agent
technology development for context-aware execution of semantic web services,
more specifically, the development of the Service Execution Agent (SEA). SEA
uses context information to adapt the semantic web services execution process
to a specific situation, thus improving its effectiveness and providing a faster
and better service to its clients. Preliminary results show that context-awareness
(e.g., the introduction of context information) in a service execution
environment can speed up the execution process, in spite of the overhead that it
is introduced by the agents’ communication and processing of context
information.

Keywords: Context-awareness, Semantic Web, Service Execution, Agents.

1 Introduction

Semantic Web Services are the driving technology of today’s Internet as they can
provide valuable information on-the-fly to users everywhere. Information-providing
services, such as cinemas, hotels and restaurants information and a variety of
e-commerce and business-to-business applications are implemented by web-accessi-
ble programs through databases, software sensors and even intelligent agents.

Research on Semantic Web standards, such as OWL-S [16] [19] and WSDL [3],
opens the way for the creation of automatic processes for dealing with the discovery,
composition and execution of web-based services. We have focused our research on
the development of agent technology that allows the context-aware execution of
semantic web services. We have decided to adopt the agent paradigm, creating SEA
to facilitate the integration of this work in open agent societies [12], enabling these
not only to execute semantic web services but also to seamlessly act as service
providers in a large network of interoperating agents and web services.

J. Huang et al. (Eds.): SOCASE 2007, LNCS 4504, pp. 1-15, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 A.L. Lopes and L.M. Botelho

In [21] the same approach was used in the Web Services infrastructure because of
its capability to perform a range of coordination activities and mediation between
requesters and providers. However, the broker-agent approach for the discovery and
mediation of semantic web services in a multi-agent environment described in [21]
does not take into account the use of context information. Thus we have decided to
introduce context-awareness into the service execution process as a way of improving
the services provided in dynamic multi-agent environments, such as the ones
operating on pure peer-to-peer networks. Furthermore, the use of context information
helps improve the execution process by adding valuable situation-aware information
that will contribute to its effectiveness.

Being able to engage in complex interactions and to perform difficult tasks, agents
are often seen as a vehicle to provide value-added services in open large-scale
environments. However, the integration of agents as semantic web services providers
is not easy due to the complex nature of agents’ interactions. In order to overcome
this limitation, we have decided to extend the OWL-S Grounding specification to
enable the representation of services provided by intelligent agents. This extension is
called the AgentGrounding and it is further detailed in [15].

We have also introduced the use of Prolog [4] for the formal representation of
logical expressions in OWL-S control constructs. As far as we know, the only support
for the formal representation of logical expressions in OWL-S (necessary for
conditions, pre-conditions and effects) is done through the use of SWRL [13] and
PDDL. Performance tests show that our Prolog approach improves the execution time
of logical expressions in OWL-S services.

The remaining of this paper is organized as follows: section 2 gives a brief
overview of related work; section 3 describes the use of context information and the
introduction of context-aware capabilities in SEA; section 4 describes a motivating
example which depicts a scenario where SEA is used; section 5 fully describes SEA
by presenting its internal architecture, external interface, execution process and the
implementation details; section 6 presents the performance tests and the overall
evaluation of our research; finally, in section 7 we conclude the paper.

2 Related Work

The need to add semantic information to web-accessible services has created a
growing research activity over the last years in this area. Regarding semantic web
services, two major initiatives rise above the other, mainly because of their wide
acceptance by the research community: WSMO [23] and OWL-S. A comparison
between the two service description languages [14] concludes that the use of WSMO
is more suitable for specific domains related to e-commerce and e-business, rather
than for generic use, i.e., for different and more complex domains. OWL-S was
designed to be generic and to cover a wide range of different domains but it lacked
the formal specification to deal with logic expressions in the service description. We
decided to use OWL-S as the Service Description Language due to its power in
representing several different and complex domains. Other semantic web service
execution approaches, such as WSMX [8] [9] are available but all rely on WSMO.
However, since OWL-S was the chosen service description language to be used in

Executing Semantic Web Services with a Context-Aware Service Execution Agent 3

this research, it is important to analyze the existing developed technology related to
this standard in particular.

Two main software tools are referred in the OWL-S community as the most
promising ones, regarding OWL-S services interpretation and execution: OWL-S VM
[20] and OWL-S API [24]. However, at the time this research work has started, the
OWL-S VM did not have a public release. OWL-S API is a developed Java API that
supports the majority of the OWL-S specifications. For being the only OWL-S tool
publicly available at the time, we have chosen to use and extend the OWL-S APL

In the interest of making the created technology interoperable with other systems
that were already developed, we decided to ground its design and implementation on
FIPA specifications, which are widely accepted agent standards. There are several
existing FIPA-compliant systems that can be used: AAP [11], JADE [2], ZEUS [18],
AgentAcademy [17] are just a few to be mentioned. We decided to use the JADE
multi-agent platform because of its large community of users that constantly
contribute to the improvement of the technology.

3 Service Execution and Context-Awareness

Context-aware computing is a computing paradigm in which applications can
discover and take advantage of contextual information. As described in [7] “context is
any information that can be used to characterize the situation of an entity, being an
entity a person, place or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves”. We can
enhance this definition of context by stating that the context of a certain entity is any
information (provided by external sensors or other entities) that can be used to
characterize the situation of that entity individually or when interacting with other
entities. The same concept can be transferred to application-to-application interaction
environments.

Context-aware computing can be summarized as being a mechanism that collects
physical or emotional state information on a entity; analyses that information, either
by treating it as an independent variable or by combining it with other information
collected in the past or present; performs some action based on the analysis; and
repeats from the first step, with some adaptation based on previous iterations [1].

SEA uses a similar approach as the one described in [1] to enhance its activity, by
adapting it to the specific situation that the agent and its client are involved in, at the
time of the execution process.

SEA interacts with a generic context system [5] in order to obtain context
information, subscribe desired context events and to provide relevant context
information. Other agents, web services and sensors (both software and hardware) in
the environment will interact with the context system as well, by providing relevant
context information related to their own activities, which may be useful to other
entities in the environment.

Throughout the execution process, SEA provides and acquires context information
from and to this context system. For example, SEA provides relevant context
information about itself, such as its queue of service execution requests and the

4 A.L. Lopes and L.M. Botelho

average time of service execution. This will allow other entities in the environment to
determine the service execution agent with the smallest work load, and hence that can
provide a faster execution service.

During the execution of a compound service, SEA invokes atomic services from
specific service providers (both web services, and service provider agents). SEA also
provides valuable information regarding these service providers’ availability and
average execution time to the context system. Other entities can use this information
(by contacting the context system) to rate service providers or to simply determine the
best service provider to use in a specific situation.

Furthermore, SEA uses its own context information (as well as information from
other sources and entities in the environment) to adapt the execution process to a
specific situation. For instance, when selecting among several providers of some
service, SEA will choose the one with better availability (with less history of being
offline) and lower average execution time.

In situations such as the one where service providers are unavailable, it is faster to
obtain the context information from the context system (as long as service providers
can also provide context information about their own availability) than by simply
trying to use the services and finding out that they are unavailable (because of the
time lost waiting for connection time-outs to occur). After obtaining this relevant
information, SEA can then contact other service-oriented agents (such as service
discovery and composition agents) for requesting the re-discovering of service
providers and/or the re-planning of composed services. This situation-aware approach
using context information on-the-fly helps SEA providing a value-added execution
service.

4 Example: Search Books’ Prices

In this section we present an example scenario in the domain of books’ prices
searching, in order to better prove the need for the existence of a broker agent for the
execution of semantic web services.

Imagine a normal web user that wants to find a specific book (of which he doesn’t
recall the exact title) of a certain author, at the best price available. Probably, he
would start by using a domain-specific search engine to find the intended item. After
finding the exact book, he would then try to find websites that sell it. After doing an
extensive search, he would finally find the web site that sells the book at the best
price, but it only features the price in US dollars. The user is Portuguese and he would
like to know the book’s price in Euros, which leaves him with a new search for a
currency converter service that would help him with this task. As we can see, this user
would have to handle a lot of different web sites and specific searches to reach its
objective: find the best price of a certain book.

The composition of atomic semantic web services into more complex value-added
services would present an easy solution to this problem. The idea is to provide a
unique compound service with the same features as the example described above, but
the use of which would be a lot simpler, since it would be through the interaction with
a service execution broker agent.

Executing Semantic Web Services with a Context-Aware Service Execution Agent 5

Fig. 1 shows the overall scenario description, by presenting all the participants and
the interactions between them. We will assume the existence of a compound service
called “book best-price search”. The dashed gray lines represent the interactions that
are not subject of this paper.

N Agent Service execution Executing Semantic
User

Re-discovering /

services Re-planning
services Providing/Acquiring
Context
Information

i Generic Context Framework

Fig. 1. Overall Scenario Description

The user of this service is represented in the figure as the client user and by his
personal agent. The client user will provide the necessary information (author’s name,
book’s title and expected currency) to his personal agent so that this can start the
interaction with the remaining participants in order to obtain the desired result of the
“book best-price search” service.

In order to request the execution of the “book best-price search” service, the
personal agent needs to have the service’s OWL-S description. This could have been
previously obtained from a composition planner agent or service discovery agent.
This interaction and the composition of the compound service are not covered by this
paper.

After sending the “book best-price search™ service’s OWL-S description and the
instantiation information (input parameters) provided by its user to the service
execution agent, the personal agent will wait for the result of the service to then
inform its user.

Semantic Web Services can be any web-based computer application, such as web
services or intelligent agents, as long as they are described using a formal description
language, such as OWL-S. They are represented in the figure on the opposite end to
the client user. For this example, we’ll consider the existence of the following
semantic web services:

6 A.L. Lopes and L.M. Botelho

e Book Information Agent — this web-accessible information agent provides
information about books and its authors

e Price Search Web Services — these web-accessible services provide an item’s
best-price search service (such as Amazon and Barnes & Noble)

e Currency Converter Web Service — this web service provides simple conversion
of a monetary value from one currency to another.

The service execution agent interacts with these semantic web services to obtain
the required information, according to instructions in the compound service’s OWL-S
Process Model and Grounding descriptions.

The service execution agent bases the execution on the service’s OWL-S
description. This OWL-S description can, sometimes, be incomplete, i.e., missing
atomic services information regarding Grounding information. This can compromise
the service’s execution simply because the service execution agent doesn’t have the
necessary information to continue. On the other hand, if the service’s OWL-S
description is complete but the service execution agent is operating on very dynamic
environments (such as pure P2P networks), the information contained in the service’s
OWL-S description can be easily out-dated (previously existing semantic web
services are no longer available in the network). This will also compromise the
agent’s service execution activity.

To solve this problem, the service execution agent can interact with other
service-oriented computing agents, such as service discovery and service composition
agents, for example, when it needs to discover new services or when it needs to do
some re-planning of compound services that somehow could not be executed, for
whatever reasons explained above.

5 Service Execution Agent

The Service Execution Agent (SEA) is a broker agent that provides context-aware
execution of semantic web services. The agent was designed and developed
considering the interactions described in sections 3 and 4 and the internal architecture
was clearly designed to enable the agent to receive requests from client agents,
acquire/provide relevant context information, interacting with other service
coordination agents when relevant and execute remote web services.

This section of the paper is divided into four sub-sections. Sub-sections 5.1 and 5.2
describe the internal architecture of the agent, explaining in detail the internal
components and their interactions both internal and external, using the agent
FIPA-ACL interface. Sub-section 5.3 describes the execution process that the agent
carries out upon request from a client agent. Sub-section 5.4 provides some details on
the implementation of the agent.

5.1 Internal Architecture

The developed agent is composed of three components: the Agent Interaction
Component (AIC), the Engine Component (EC) and the Service Execution
Component (SEC). Fig. 2 illustrates the internal architecture of the agent and the
interactions that occur between the components and with external entities.

Executing Semantic Web Services with a Context-Aware Service Execution Agent 7

Context System

Client
agent

planning
agents

Service provider
agents

Web
Services

Fig. 2. SEA Internal Architecture and Interactions

The AIC was developed as an extension of the JADE platform and its goal is to
provide an interaction framework to FIPA-compliant agents, such as SEA’s clients
(requesting the execution of specified services — Fig. 2, step 1) and service discovery
and composition agents (when SEA is requesting the re-discovering and re-planning
of specific services — Fig. 2, steps *). This component extends the JADE platform to
provide extra features regarding language processing, behaviour execution, database
information retrieval and components’ communication. Among other things, the AIC
is responsible for receiving messages, parsing them and processing them into a
suitable format for the EC to use it (Fig. 2, step 2). The reverse process is also the
responsibility of the AIC — receiving data from the EC and processing it into the
agents’ suitable format to be sent as messages Fig. 2, step 9).

The EC is the main component of SEA as it controls the agent’s overall activity. It
is responsible for pre-processing service execution requests, interacting with the
context system and deciding when to interact with other agents (such as service
discovery and composition agents). When the EC receives an OWL-S service
execution request (Fig. 2, step 2), it acquires suitable context information (regarding
potential service providers and other relevant information, such as client location —
Fig. 2, step 3) and schedules the execution process. If the service providers of a
certain atomic service (invoked in the received composed service) are not available,
SEA interacts with a service discovery agent (through the AIC — Fig. 2, steps *) to
discover available providers for the atomic services that are part of the OWL-S
compound service. If the service discovery agent cannot find adequate service
providers, the EC can interact with a service composition agent (again through the
AIC — Fig. 2, steps *) asking it to create an OWL-S compound service that produces
the same effects as the original service. After having a service ready for execution,
with suitable context information, the EC sends it to the SEC (Fig. 2, step 4), for
execution. Throughout the execution process, the EC is also responsible for providing
context information to the context system, whether it is its own information (such as

