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Preface

Diophantine Approximation is a branch of Number Theory having its origins
in the problem of producing “best” rational approximations to given real num-
bers. Since the early work of Lagrange on Pell’s equation and the pioneering
work of Thue on the rational approximations to algebraic numbers of degree
> 3, it has been clear how, in addition to its own specific importance and in-
terest, the theory can have fundamental applications to classical diophantine
problems in Number Theory. During the whole 20th century, until very recent
times, this fruitful interplay went much further, also involving Transcenden-
tal Number Theory and leading to the solution of several central conjectures
on diophantine equations and class number, and to other important achieve-
ments. These developments naturally raised further intensive research, so at
the moment the subject is a most lively one.

This motivated our proposal for a C.I.M.E. session, with the aim to make
it available to a public wider than specialists an overview of the subject,
with special emphasis on modern advances and techniques. Our project was
kindly supported by the C.I.LM.E. Committee and met with the interest of a
large number of applicants; forty-two participants from several countries, both
graduate students and senior mathematicians, intensively followed courses and
seminars in a friendly and co-operative atmosphere.

The main part of the session was arranged in four six-hours courses by
Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W.M. Schmidt
(Boulder) and M. Waldschmidt (Paris VI).

This volume contains expanded notes by the authors of the four courses,
together with a paper by Professor Yu.V. Nesterenko (Moscow) — who was
unable to accept our invitation to give an expected fifth course — concerning
recent work by Matveev.

We shall now briefly illustrate the corresponding contents.

Masser’s contribution concerns, roughly speaking, the modern theory of
heights, starting with the most basic notions and then turning to the more
sophisticated context of algebraic groups. This ample overview describes fun-
damental results and techniques in the subject, together with applications to
transcendence problems. Masser also outlines the transcendence theory of el-
liptic logarithms and abelian functions (which he originally developed), and
its important recent consequences toward outstanding diophantine problems
on curves and abelian varieties.

Nesterenko’s article is devoted to the proof of the nowadays best known

lower bounds in Baker’s theory of linear forms in logarithms of algebraic
numbers. With the aim of stressing the new ideas introduced by Matveev, the
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author concentrates on a situation slightly simpler in detail than the most
general one, but containing all the important features of the methods.

Schlickewei deals with the celebrated Subspace Theorem. This result, orig-
inally discovered by W. M. Schmidt, is a far-reaching extension of Roth’s The-
orem on the approximations of an algebraic number by rationals, also covered
in the lectures. Schlickewei describes the most recent sharpenings (such as
the “absolute version”), obtained mainly in joint work by himself and J.-H.
Evertse. Finally, he presents here his very recent work on a version of the the-
orem for approximation by algebraic numbers of bounded degree (obtained
jointly with H. Locher).

Schmidt’s article concerns the diophantine theory of linear recurrences,
whose famous prototype is the Fibonacci sequence. He gives a general survey
of the most important problems, methods and results, involving also S-unit
equations and intersections of varieties with finitely generated multiplicative
groups. In particular, he also illustrates the general strategy underlying his
recent solution of an outstanding conjecture in the field; namely, the zero-
multiplicity of a non-degenerate linear recurrence is bounded only in terms of
the “length” of the recurrence.

Waldschmidt’s contribution is on transcendence and linear independence
over Q of logarithms of algebraic numbers. Starting with Lindemann’s classi-
cal theorems on the exponential function, he proceeds with the sophisticated
results by A. Baker, which yield fundamental applications to effective dio-
phantine analysis. Waldschmidt describes several approaches to the techni-
cally complicated proofs, clarifying the main ideas underlying methods which
may confound the non-expert. He also details certain modern devices to obtain
the best numerical bounds for the involved quantities.

The topics presented in such fine lecture notes incorporate many of the
most fundamental methods and applications of Diophantine Approximation,
giving an extremely broad viewpoint, precious for both beginners and experts.
Also, the style of exposition has little in common with other contributions to
the topic and the volume substantially enriches the existing literature.

It is a pleasure for us to thank the authors for their difficult work in
coordinating the respective contributions, for their efforts in explaining the
subtle points in the simplest and most effective style, and for working out
these beautiful papers. We also thank the participants, whose enthusiasm was
fundamental for the success of the session.

Finally, the editors express their thanks to Carlo Viola for his valuable ad-
vice and help concerning both the organization of the session and the prepa-
ration of the present volume.

Francesco Amoroso Umberto Zannier
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Heights, Transcendence, and Linear
Independence on Commutative Group
Varieties

David Masser

Mathematisches Institut, Universitat Basel

1 First lecture. Introduction and basic techniques

Of course it is impossible for four lecturers to cover the whole of diophantine
approximation and transcendence theory in 24 hours. So each one has to
restrict himself to special aspects.

These notes expand slightly on my original lectures, and I am grateful to
Sinnou David for his comments on an earlier manuscript.

Let us start with perhaps the most basic problems, analogous to the Gold-
bach conjecture in analytic number theory. In 1744 Euler proved that the
number e is irrational, and shortly after in 1761 Lambert did the same for .
We still don’t know if e + 7 is irrational, and no-one expects a proof soon.

Much later in 1873 Hermite proved that e is transcendental; that is, the
only polynomial P(X) with coefficients in the field Q of rational numbers
satisfying P(e) = 0 is the zero polynomial. Shortly afterwards in 1882 Linde-
mann did the same for 7. And a general 1934 result of Gelfond and Schneider
implies the same for e™.

It follows in particular that the value I'(1/2) = /7 of the classical gamma
function is also transcendental; for example if we have a non-trivial equation
P(y/7) = 0 then we can write P(X) = XQ(X?) — R(X?) and it would follow
that m(Q(n))? = (R(w))? giving a non-trivial equation for m. More generally,
if C denotes the field of all complex numbers, the subset

Q= {a in C; thereis P # 0 in QX] with P(a) =0}

is known to be a field. So /7 in Q would imply 7 in Q, a contradiction.

We also know that I'(1/3) is transcendental, although this is a relatively
recent result of 1976 or so obtained by Chudnovsky. The proof is however dif-
ferent in several respects: for I'(1/2), = and e one uses in an essential way the
exponential function e?, whereas for I'(1/3) one uses the Weierstrass elliptic
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function p(z) satisfying the differential equation (p'(z))? = 4(p(z2))® — 4 (see
Lecture 3). To this function is associated the elliptic curve E whose affine
part is defined by y? = 423 — 4; and so we have a commutative group va-
riety or algebraic group. Actually we already had one with e?; this function
parametrizes the multiplicative group G,, whose complex points Gy, (C) are
the non-zero complex numbers C*.

In fact Chudnovsky uses also the function ((z) satisfying ¢'(z) = —gp(2);
this corresponds not to F but to a group extension G in the exact sequence

0-G, - G—>FE—>0

with the additive group G, (see Lecture 6). In fact we know rather more:
the proof delivers the algebraic independence of I'(1/3) and 7, which means
that the only polynomial P in Q[X, Y] satisfying P(I'(1/3),7) =01is P = 0.
Taking P in Q[X] gives the transcendence of I'(1/3).

The topic of algebraic independence will however not be treated in these
lectures. It was recently the subject of an instructional conference in Luminy;
see Springer Lecture Notes 1752 “Introduction to algebraic independence the-
ory”.

Similarly by considering y? = 423 — 4z Chudnovsky proved the transcen-
dence of I'(1/4).

More recently Nesterenko proved the algebraic independence of the three
numbers 7, €™, I'(1/4), which was new even if I'(1/4) is omitted. The proof
uses modular forms, for which there is no underlying group variety.

Going further, one hopes that in the next ten years the transcendence
of I'(1/5), via the algebraic independence of w, I'(1/5) and I'(2/5), will be
established using the curve y? = 4z°—4. Right now we know only the algebraic
independence of at least two of these numbers (see for example Chapter 3 of
the recent Ph.D. Thesis of P. Grinspan). This curve has genus 2, and so we
have to use the apparatus of Jacobians or more generally abelian varieties A
or even extensions G satisfying

0->L->G—->A—>0

with L = G, x G, a linear group variety. And already such extensions include
all commutative group varieties over Q.

It would be possible to start the present lecture course with a discussion
of such general objects G; and possibly this suits the taste of several people
in the audience. But I prefer to start with G,, and gradually work upwards;
thus the present Lecture 1 as well as Lecture 2 will stay on the G,,, level. Then
Lectures 3 and 4 will go elliptic, Lecture 5 abelian, and finally Lecture 6 will
treat aspects of the general case. At present, as might be expected, we can do
a lot more for simpler group varieties, and one would lose many subtleties by
going rightaway to the general case.

Back to basics. Once we know that a number like 7 is transcendental it is
natural to ask for more quantitative results; for example how small can P(7)
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be for nonzero P(X) in QX], or nearly equivalently how small can |7 —a| be
for a in Q7 Thus Mahler in 1953 used Hermite’s methods to prove

T —r/s] > s (1.1)

for all rational integers r,s in Z with s > 2. This looks like a curiosity, but
in fact in the case G = G}, (corresponding to Baker’s Theorem — see the
lectures of Michel Waldschmidt) these quantitative results are as important,
if not more so, as the purely qualitative ones. Thus lower bounds for linear
forms in logarithms can be applied to diophantine equations, class number
problems, and so forth.

The elliptic analogues for E™ also have applications of a different sort to
diophantine equations, and also to isogeny problems for elliptic curves (see
Lecture 4). And those for A™ can be applied not only to isogenies but also
to answer some interesting polarization questions for abelian varieties (see
Lecture 5).

It will be unavoidable to talk about heights. These started life as a mere
tool in the proofs, but they have gradually acquired a life of their own and are
today the subject of intensive research. The original methods of transcendence
theory are employed in order to prove results about heights which can then
be applied in other areas of number theory. In particular the theory of lower
bounds for heights is very active at the moment, and we will see examples in
Lectures 2, 3 and 5.

Again back to basics. Before we begin with group varieties, let us give
an example in Mahler’s Method, where there is no natural underlying group
variety, only a kind of “2-action”. This method seems also to have provided
some of the inspiration for the precursors of Nesterenko’s Theorem mentioned
above.

In general the technical nature of most of the material makes it impossible
to give complete proofs. But as an exception we will now prove the irrationality
of the number

o0

n=2/3+(2/3)> +(2/3)" + (2/3)* +--- = ) _(2/3)*".
m=0
Consider the “auxiliary polynomial”
P(X,Y)=2XY%4+4XY -3Y?+ X -Y. (1.AP)

This may well be the first explicit specimen that the reader has ever seen;
however it will not be the last. Define the numbers

an=P((2/3)" " mn)  (n=0,1,2,...)

with
2n+2

M= (2/3)2" +(2/3)" 4o = “tail” of 1.
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Clearly a, is rather small; certainly O((2/3)2"+1) as n — oo. But P was
chosen to make it even smaller. One finds after a short calculation that

2n+l

an = —2(2/3)62“1 + higher powers of (2/3)

and so o .
ol < 3(2/3)%2"" < (1/10)? (1.UB)
if n is sufficiently large. Thus we gain an extra 6 in the exponent.

Now assume to the contrary that 7 is rational. It follows that

an =P ((2/3)2”‘, n—2/3—(2/3)% = — (2/3)2")

is rational. We can estimate its denominator: if n = r/s (r,s in Z, s > 1) we
find that s, = 32" '(5.32")2 is one; that is, spay is in Z. The “Fundamental
Theorem of Transcendence” says that |V| > 1 if N is in Z with N # 0. It
follows that

27I+1

lan| > 1/sn = 342(1/9) (1.LB)

provided
an # 0. (1.NV)

Now if n is large enough, (1.LB) contradicts (1.UB).

But why is a, # 07 This innocent question is here easy to answer, but
it will become more and more of a nuisance until it almost takes over the
subject. We will see the outcome in Lecture 6.

There are many ways of proving a, # 0. The fastest is analytic, and
consists of checking that

lim a,/(2/3)°2"" = 2. (1.2)

Thus a, # 0 for all n large enough. This is strong but the argument doesn’t
generalize too well, for example to several variables. An algebraic way is to
observe that

an = P(En,mn),  En=(2/3)""".

Now the curve defined by P = 0 has infinitely many points, so there is no
immediate contradiction from «, = 0. But

Qp41 =Q(§mﬂn)» Q(va) =P(-‘Y27Y_X)'

The equations P = Q = 0 define an intersection of two curves and therefore
probably a finite number of points. And indeed the resultant of P and @ (with
respect to Y) is readily computed as

R(X)=16X"" —48X° + 36X® — 16X

(why are there so many zeros at X = 0?). Now if n is large enough then
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an #0 or apy; #0

otherwise R(&,) = 0, which is impossible. So (1.NV) holds for infinitely many
n, and this weak assertion suffices for the above irrationality proof.

In some ways this proof is typical. The steps can be designated as fol-
lows (their order is not too important, and it is sometimes logically better to
interchange the last two):

(AP) - construction of auxiliary polynomial,
(UB) - obtaining an upper bound,

(LB) - obtaining a lower bound,

(NV) - proving the non-vanishing.

One can replace 2/3 in the preceding example by any other rational { with
0 < [¢| < 1, although the step (AP) can no longer be done explicitly, making
the other steps correspondingly more difficult.

What lies behind (1.AP)? Of course nn = f(2/3) for the analytic function

oo

flay=3 2"

m=0

Now P is chosen such that the function

p(2) = P(z, f(2))

has a zero of order 6 at z = 0; its Taylor expansion there starts with —2z.
Further a,, = cp((2/3)2n+1) and so we see (1.2) more clearly.

For an explanation with interpolation determinants see Waldschmidt’s lec-
tures (section 2.1).

If we replace 2/3 with say 1999/2000 then P(X,Y’) has to have degree at
most 22796 in each variable, with ¢ having a zero of order at least 519703208,
and its coefficients are rational integers of size probably about 109" So there
is no hope of seeing the polynomial explicitly.

In general if P has degree at most L in each variable, then ¢ can have a
zero of order at least T' = (L + 1) — 1; and the proofs work because L? grows
faster than L. Of course the functional equation f(2%) = f(z) — z also plays
a crucial role.

We should also note the following. Even though we cannot write P(X,Y")
down, it must of course be non-zero. The algebraic independence over QQ
(and even over C) of the functions z and f(z) is easy to verify, and there-
fore p(z) = P(z, f(z)) is not identically zero. So the above analytic proof of
(1.NV) generalizes immediately.

A more serious difficulty is the step from irrationality to transcendence.
It was Mahler in 1929 who proved that f({) is transcendental whenever ( is
algebraic with 0 < || < 1. He used an ad hoc version of (LB); in particular
it no longer suffices to consider the denominator alone. See the book [56] of
Nishioka for a complete proof (pp. 1-5), as well as an excellent general account.
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A substitute for the denominator can easily be found. Any a in Q satisfies
an equation P(a) = 0 with P(X) in Q[X], and one can assume that

(i) P(X) is irreducible over Q,
(i) P(X)=aoX%+---+ aq with coprime ag, ...,aq in Z and ag > 0.

Then P(X) is unique, and its degree d is the degree [Q(a) : Q] of a;
and if d = 1 this ag is the denominator of a. Unfortunately any inequality
|a| > 1/F(ag) is no longer true if d > 1, so we need more than just ag.
Formerly one took max{|ag|,...,|aq|}, but one gets much better functorial
properties first by factorizing P(X) over C (or Q) as

d
P(X) =00H(X—Oli)

=1

for the conjugates a;, ..., aq; and then by defining
d 1/d
H(a) = (aOHmax{l,|a,~|}) . (1.3)
1=1

The exponent 1/d is needed for properties such as
H(a™) = (H(a))™

for all m in Z, which is not quite trivial to prove even for m = 2 (see Lecture 2).
Examples are H(1999/2000) = 2000, H(26/65) = 65 and more generally

H(r/s) = max{|r|, s}

for coprime r,s in Z with s > 1. Or H(v/2) = /2 and more gener-
ally H(2'/4) = 21/d for every d > 1 in Z. And H(1 — V2) = V1+ /2,
H(v/=6) = V6, H(1 + V/=6) = V7, H1 + ¥/2) = /3. Or H(e™/5) = 1 and

more generally H(7) = 1 for every root of unity 7. And finally

H(1—e™/%) = ,/%(1 +V5) = H(%(l-i— \/5)>

and, selected at random,
H(1/(p* — 5p + 50)) = v/147200

for p® — 7p+10 = 0.
Now (LB) takes the form

la| > (H(a))™ (1.4)

for any a # 0 in Q. For the proof one notes that H(a~!) = H(a) is easy, and
then
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(H(a™))* > max{1,|a""[} > |a| 7.

As soon as one is accustomed to this height function, one may go ahead
and prove the general result on f(({) referred to above. For example, to show
that f(2/3) is not an algebraic number of degree at most 1999 one uses an
auxiliary polynomial P(X,Y") of degree at most L = 8119 in each variable,
with the parameter n tending to infinity. But to establish the transcendence
of f(2/3) this degree L must also be allowed to go to infinity, independently
of n.

The algebraic independence over Q of z and .f(z) is now necessary not only
for the proof, but also for the truth of Mahler’s result. A vivid illustration of
this was accidentally provided by Mahler himself. In [43] he used the functions

z and -
=3 2" /a-2"")

m=0

apparently to prove the transcendence of = g(%(l —/5)). In terms of the
Fibonacci numbers fo =1, f; =1, fo =2, ... of Wolfgang Schmidt’s lectures
(section 1), we find that

oo

S 1/fon=2-1

n=0
and is therefore also transcendental. After publication it was however pointed
out that the sum is (7 — v/5)! The explanation is that z and g(z) are not
algebraically independent and indeed g(z) = z/(1 — z).

A similar phenomenon occurred in my thesis [44] (Chapter 3) when I was
attempting to prove the linear independence of five numbers connected with
an elliptic function in the case of complex multiplication. I failed; apart from
incompetence the only imaginable explanation was the algebraic dependence
of certain functions, and it turned out that this dependence did lead back
to an unexpected (at least by me) linear relation between three of the five
numbers.

Very recently Corvaja and Zannier have given another approach to the
transcendence of numbers like f(¢) = 3°°°_ ¢*" which does not use func-
tional equations. It is based on the Subspace Theorem with several valuations,
and in view of the accompanying lectures of Hans Peter Schlickewei it seems
appropriate to sketch the ideas, for simplicity in the context of irrationality.

We then require the p-adic valuations | |, on Q defined for each positive
prime p by |p|, = 1/p and |g|, = 1 for every integer ¢ not divisible by p,
together with multiplicativity |zy|, = |z|p|y|p, and |0|, = 0. We already have
|z|oo = |z| the standard archimedean valuation.

For example to prove the irrationality of n = f(2/3) above, one could
note that 7 = r/s would differ from the rational number 5 — 7,, by the small
quantity 7,,. This by itself does not lead to a contradiction, even if we take into
account the special denominator of n — n,, by working also 3-adically. Instead
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one subtracts off an extra (2/3)2"+l from n, to get Np41 = 0((2/3)2n+2) which
is even smaller, and one works 2-adically as well. In terms of the linear forms
Mo (X,Y)=X +Y, Noo(X,Y)=Y,
My (X,Y) =X +Y, Ny (X,Y) =Y,
M;3(X,Y) =X, N3 (X,Y) =Y,

evaluated at (zn,yn) = (32" rn, —22" "' s) with r, = 32" s7, in Z one finds

n n+1
|Moo($n7yn)'oo = 32 +137’n+1, |Noo($n,yn)|oo =% & S,
n+41
|Ms(2n,yn)l2 < 1, | N2 (@, yn)l2 < 27277,
|Ms(@n,yn)ls < 377, |N3(zn,yn)ls < 1,

and that as n — oo the product is O(#%") with § = 16/27. Now the rational
Subspace Theorem with S = {00,2,3} (see Schlickewei’s lectures, section 1
or his original papers [65], [66] especially Theorem 4.1 p. 395, [67] or also [70]
Theorem 1D p. 177) easily supplies the required contradiction; all we need is
0 < 1 (and earlier results like Ridout’s would have sufficed).

If we again replace 2/3 by ¢ = 1999/2000 then it is now the S-units
¢ ¢ that should be subtracted off from the “almost S-unit”
fQO)=¢C—---—¢*¥ with § = {0,2,5,1999}, and the Subspace Theorem in
14 variables can be used. However an extra argument is needed to eliminate
the exceptional subspaces of dimension 13.

See [18] for several other applications of these ideas.

One down, five to go...

2 Second lecture. More on heights

In the last lecture we saw how to define a height function H from the set Q
of all algebraic numbers to the real interval [1, c0), principally as a measuring
device. But it has remarkable functorial properties, making it useful for a
variety of problems, and many of these problems lead to the same fundamental
question: how small can its values be?

We already noted in Lecture 1 that H(7) = 1 for all roots of unity 7.
Kronecker’s Theorem of 1857 says that H(a) > 1 for all other a # 0. But
H(2'/4) = 2'/4 for all positive integers d, so H(a) can get arbitrarily close
to 1. On the other hand (H(2'/4))? = 2 is bounded away from 1, and in
1933 Lehmer [42] asked if (H(a))? is generally bounded away from 1 for all
algebraic numbers a # 0 of degree d that are not roots of unity. In fact
Lehmer restricted himself to algebraic integers, because otherwise ap > 2 in
(1.3) of Lecture 1 and so already (H(a))? > 2. The answer is still unknown,
and Lehmer himself found the smallest value so far, which is (H(aj0))!° =
1.176. .., with P(aj9) = 0 for



