BASIC
CHEMICAL
KINETICS

H. EYRING

Department of Chemistry
University of Utah

S. H. LIN

Department of Chemistry
Arizona State University

S. M. LIN

National Chung-Shan Institute of Seiences and Technology

A Wiley-Interscience Publication
JOHN WILEY & SONS

New York - Chichester - Brisbane - Toronto



Copyright © 1980 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

Eyring, Henry, 1901~
Basic chemical kinetics.
“A Wiley-Interscience publication.™
Includes index.
1. Chemical reaction, Rate of. 1. Lin, Sheng

Hsien, 1937- joint author. II. Lin, S. M., joint
author. III. Title.
QDS502.E97 541°.39 79-26280

ISBN 0-471-05496-8
Printed in the United States of America

109876543



Preface
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In this chapter we briefly present some elementary mathematical methods
that are frequently used in solving chemical kinetics problems. The applica-
tion of these methods is demonstrated by solving some particular reactions.
We also discuss the validity and limitations of the applications of steady-state
approximation and equilibrium approximation to reaction kinetics.

1.1 METHOD OF SEPARATION OF VARIABLES

According to the law of mass action for the chemical reaction
aA+bB —— ¢C+dD (1.1)
the rate of reaction is proportional to a product of concentrations of reactants,
rate = kC% C4 (1.2)
1



2 Introduction

where k is called the rate constant. The rate of reaction can be represented
by —(dC,/dt) or —(dCpg/dt) or (dCc/dt) or (dCp/dt). There exists a relation
among these representations

_1dC, _ _1dCy _ 1dCc _1dCy

—= = =——=- L.
a dt bdt c¢dt ddt (13)
assuming that the stoichiometry of reactions is also given by eq. 1.1.
Next we consider the simplest case
aA —— products (1.4)
In this case the rate of reaction is given by
dCy
— —= = kC4 1.5
= ke (1)
This equation can be solved by using the method of separation of variables
dC,
- = kdt 1.6
ci (1.6)

If a # 1, we can carry out the integrations of both sides of eq. 1.6 inde-
pendently to obtain

1 1 S 1 1
a—1 Cy1 a—1 C%t

(1.7)

Here we have assumed that the initial concentration of A4 is C,, (i.e., at
t =0,C,4 = C,p) Similarly, for a = 1, we have

log Cy = —kt + log C 4 (1.8)

or
C4 = Cyo exp(—kt) (1.9)

It should be noticed that eq. 1.8 can be obtained from eq. 1.7 by using the
I'Hospital rule.

Equation 1.7 indicates that the plot of 1/C% ! versus ¢ is linear with the
slope of (a — 1)k and the intercept of 1/C%;*. Similarly, eq. 1.8 shows that
log C, versus t is linear; the slope is —k and the intercept is log C,,. These
features provide us a method to determine the order of reactions and the rate
constant. For reactions like those given by eq. 1.4, the half-life ¢, ,, which is
defined as the time required for the reactant concentration to reduce to one-
half of its value, exists and can easily be found by setting C, = 1C,, in
egs. 1.7 and 1.8 to yield

20=1 — 1

=2 — - 1.1
R P § T (1.10)
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fora # 1 and

s = — (1.11)

for a = 1, respectively.
Now we consider another simple case of eq. 1.1.

A + B — products (1.12)

If the initial concentrations of 4 and B are C 4, and Cp, then at a particular
instant C, = C4, — ¥ and Cg = Cpo — x. Thus the rate of reaction in this
case can be written as

dcC dCg dy
— = =5 = kCaCs=kCao — (Cao — 1) (1.13)
Separating the variables in eq. 1.13 and carrying out the partial fraction of the
resulting expression yields

| 1
dx __ U ( - ) —kdt (1.14)
(Cao = )(Cpo — %) Cpo— Cuo\Cuo —x Cpo— 1

which can easily be integrated

1 Cpo — X 1 Cgo
log =kt + ———— log— (1.15)
Cpo — Cao Cio— 1 Cpo — Cyo : Cao
or
1 Cpg 1 Cgo
——log—=kt+ ————log— (1.16)
Cy — Cag. " Cas—Cxo - Cao

Equation 1.13 can also be integrated by using the relation Cz = Cpy —
dC 4

= 7 = kCA(CBO - CAO + CA) (117)

and by carrying out the partial fraction of 1/C 4,(Cgo — C40 + C,4). Equation
1.16 indicates that for the reaction mechanism given by eq. 1.12 the plot of
log(Cp/C 4) versus ¢ is linear with the slope k(Cgo — C 40) and the intercept
log(Cpgo/C 40). Notice that when C, o = Cpq, €q. 1.13 reduces to eq. 1.15 for
a =2 and eq. 1.16 can be reduced to eq. 1.7 by using the ’'Hospital rule.
Other cases of eq. 1.1 can be discussed similarly (Benson, 1960; Cappellos
and Bielski, 1972; Laidler, 1965).
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1.2 DETERMINANT METHOD (EIGENVALUE METHOD)

To demonstrate this method let us consider the reaction

ky

A . B (1.18)
The rate equations are given by
%‘ = —k;C4 + kyCp (1.19)
and
d‘%=k,C,,—k,,CB (1.20)
To solve these equations, we let
C,= Aje™*, Cp= Aye ™™ (1.21)

It follows that
(/1 - kf)Al + kbAZ = 0
(1.22)
kal + (l = kb)AZ = 0

In eq. 1.21, A4, A,, and A are to be determined. For A, and 4, to have non-
trivial solutions, we must have

l_kf kb _
kf A'_kb N

This is usually called the secular determinant and 4 is called the eigenvalue
of this determinant. The two roots of eq. 1.23 are given by

}»1 = 0, 112 = kf + kb (1.24)
Thus the solutions of eq. 1.21 become

Cy=Ape M 4+ Ao ™

0 (1.23)

Cp= Ay ™'+ Aye ™ (129
Notice that for A = 4,, we have
(Ay + kp)Ayy + kyAyy =0 (1.26)
or
Ay =&A“ 1.27)

ky
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Similarly, for A = 4,
(Ay — kp)Aj2 + kyAy =0 (1.28)
or
Ay = —Aq, (1.29)
Substituting eqs. 1.27 and 1.29 into eq. 1.28 yields
Cy= Ay e+ A0

" (1.30)
Cp = k—:A“e_'l" - Alze_h'
Suppose att =0, C, = C o and Cyz = Cg.
Cyo= Ay + Ay
kf
C80=k_A11 — A, = KAy, — Ay, (1.31)
b

where K = kj/k,, the equilibrium constant. Solving for 4, and A4,,, we
obtain

Ca0 + Cpgo KC40 — Cpgo
- —BO =4 5 1.32
Au 1+k o 1+ K (132)
Therefore the solutions given by
C, = (C40 + Cpo) | (KCyo + Cpo) o thr oy
1+ K 1+ K
_ K(Cyo + Cpo)  (KCso = Cpo) __k; +koy
Cp= 1+ K 1+ K e (1.33)
Let t —» co. Equation 1.33 then reduces to
Ca0 + Cpo (K(C40 + Cpo)
=— =— " 1.34
CAe 1 + K s CBe 1 + K ( 3 )

which of course represent the equilibrium concentrations of 4 and B.

One of the main purposes in chemical kinetics is to determine the rate
constants. In the above discussed rcversible reaction, two rate constants
k, amd k, are involved and to be determined. Suppose that k,C 4o > k; Cpo.
Then the reaction proceeds from the left to the right until the equilibrium
is reached. In this case the concentration of 4 decreases with ¢, and the con-
centration of B increases with ¢t. If we follow the reaction by measuring C,
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as a function of time ¢, then from the limiting value of C, = C4, as t = o0,
we obtain one condition of C,, = (C4o + Cgo)/(1 + K) (i.e., we determine
the equilibrium constant) and from the slope of the plot of log(C4 — Cy4,.)
versus t, we obtain k, + k,. These two conditions provide us enough
information to determine k, and k.

Although we have applied the determinant method to solve egs. 1.19 and
1.20, actually egs. 1.19 and 1.20 can be solved by using the method of separa-
tion of variables. Notice that

dC, dCg
PR —_— 1. 5
dt dt . (1.35)

which indicates that C4 + Cjp is a constant, that is,
CA + CB = CAO + CBO (136)
Using eq. 1.36, we can eliminate Cg from eq. 1.19 to obtain

dcC
= ~(ks = k)Cu + k(Cao + Cpo) (1.37)
which can of course be easily solved by using the method of separation of
variables.

The determinant method can be applied to solve a set of first-order
equations or pseudo-first-order equations. If the set of reactions is first order,

for example,
A
B C

then among the three eigenvalues obtained, one of them will be zero; this
eigenvalue corresponds to the equilibrium situation. In this case the concentra-
tion of, say A, can be expressed as

Cy=Ape ™ + Ao 2 + A6 ™ (1.38)

where 1, = 0. Here 4,, A,,, A5, 4,, and A5 are related to the initial con-
centrations and the four rate constants. Now if we follow the reactions by
measuring C, versus t, we can determine Ay, A,,, A3, 45, and A3, which
can in turn be used to determine the four rate constants if we know the
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initial concentrations of at least two reactants. On the other hand, for the

set of reactions
A

B — C

there are six rate constants to be determined and C 4 is still given by eq. 1.38.
In this case, if we measure C, versus t and even if we know the initial con-
centrations of all the three reactants, we have only five relations A4,,, 4,,,
Ay3, 4,, and 45 for six unknown rate constants. In other words, in this case
we need another independent measurement to determine the six rate con-
stants completely.

The determinant method has been applied to study the effect of vibrational
relaxation on unimolecular reactions (Lin et al., 1972; Lin and Eyring, 1974)
and on molecular luminescence (Lin, 1972), the stochastic models of reaction
kinetics (Widom, 1974; Bartis and Widom, 1974), and the kinetic Ising model
(Lacombe and Simha, 1974).

1.3 LAPLACE TRANSFORM METHOD

In this section we discuss how to employ the Laplace transform method (cf.
Appendix One) to solve chemical kinetic problems.
To begin with, we consider the reaction

A — products
for which we have

dC,
== —kCy (1.39)

Applying the Laplace transformation to eq. 1.39, we obtain

= - - C
_CAO + PCA = —kCA, CA = IH_—AOI) (140)

Carrying out the inverse Laplace transformation of eq. 1.40 yields eq. 1.9
(see Appendix One).
Next we consider the reaction

ky

A —==— B (1.41)

ky




8 Introduction

The rate equations for this reaction are given by eqgs. 1.19 and 1.20 and have
been solved by using the determinant method. We solve these same equations
by using the Laplace transform method.

Carrying out the Laplace transformation of egs. 1.19 and 1.20, we obtain

P(—:A = CAO = _kaA + kbéﬂ (142)
and
PCB - CBO = kaA - kbCB (143)
where C, and Cp represent the Laplace transforms of C, and Cp,
G, = f e P(C,dt (1.44)
0
and
Cy= f e PCpdt (1.45)
0

Solving for C, and Cp from eqs. 1.42 and 1.43, we find

~ CAO(P + kb) + kb CBO
C, = 1.4
4 P(P + k; + k;) (1.46)

and

= CBO(P+kf)+kaAO
Cy = :
B P(P + k; + k;) (A7)

Noticing that

1 1 1 1
— == 1.48
P(P + k; + ky) (P P+k,+k,,)k,+k,, (1.48)
we can carry out the inverse transformation of eqs. 1.46 and 1.47 (see
Appendix One)
C _ CAO + CBO KCAO - C
47 14K 1+ K

B9 exp[—(k; + ky)t] (1.49)

and

_ K(C40 + Cpo)  (KCyo — Cpo)

Cp 1+ K 1+ K

exp[—(k; + kp)t]  (1.50)

Next we show the application of the Laplace transform method to the
diffusion problem (Crank, 1957). For this purpose we first derive the diffusion
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equation for the one-dimensional case. Let us consider the points yand y + dy.
Then at a particular instant ¢ if we let J(x) and J(x + dy) be the flux at y and
% + dy, respectively, the accumulation of mass between y and y + dy in the
time interval dt causes the change in concentration dC,

V() — J(x + dy)] dt = dC dy (1.51)
Using the Taylor expansion, eq. 1.51 can be written as

ac_

r iaa - (1.52)

Now according to Fick’s empirical law, we have J(x) = — D(0C/0y), where D
represents the diffusion coefficient. Inserting this relation into eq. 1.52, we

obtain
€2 (p
ot ox\ oy (1.53)
If D is independent of C, then eq. 1.53 reduces to

oC 9*C

o =Pz (1.54)

For the three-dimensional case, it can easily be shown that the corresponding
diffusion equation is given by

aC )
YT DV+C (1.55)
where
0? 0? 0?

2—— ——— —
v _6x2+(3y2+522

As an example of the application of the Laplace transform method, we
consider the problem of diffusion in a semiinfinite medium, y > 0, in which
the boundary is kept at a constant concentration C,, the initial concentra-
tion being zero throughout the medium. Thus we have

C'= Cy; x=0, t>0 (1.56)

and

C =0, x>0, t=20 (1.57)
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Carrying out the Laplace transformation of eq. 1.54 yields,

~ . d*C(P)
PC(p) =D e (1.58)

which can easily be solved

C(P) = 4, exp(—x\/g) + 4, exp<x\/§) (1.59)

where A, and A, are the integration constants. As C(P) is finite as y — o0, we
find 4, = 0. From eq. 1.56, we know that at y = 0,

Co
P
by carrying out the Laplace transformation of eq. 1.56, that is, A; = C,/P. It

follows
= Co P
C(l ) = = GXp(—X\/:D) (1.61)

Inverting the transformation (see Appendix One) yields

cp) = (1.60)

Ctt) = Co2o X omv2 gy = €y erfe 2 (1.62)
’ NN D

From eq. 1.62 we can see that in order to determine D, we need only measure
the concentration at a particular y and particular instant .

To conclude this section of the Laplace transform method, it should be
noted that as long as the rate equations are linear with respect to concentra-
tions of reactants, this method can be used. Nonlinear rate equations can be
made linear by making the concentrations of certain reactants in large excess
in comparison with others. We return to the application of the Laplace
transform method in unimolecular reactions.

1.4 MISCELLANEOUS METHODS

In this connection we discuss several methods of considerable generality.
For other particular methods the literature may be consulted (Benson,
1952; Mowery, 1974; Kremer and Baer, 1974; Donohue, 1974). As usual we
illustrate these methods by examples. First we consider

Ky ks

A > B . C (1.63)
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The rate equations in this case are given by

dc

th = —k,C, (1.64)

o kCa— kG (165)
t

dC

d—tc = k,Cy (1.66)

These equations can of course be solved by using the determinant method and
Laplace transform method. We can also solve these equations by starting with
eq. 1.64. The solution of eq. 1.64 can easily be carried out

CA = CAoer” (1.67)
where C,, is the initial concentration. Substituting eq. 1.67 into eq. 1.65
yields
dCg

7 + kz CB = kICAo(’_kl' (1.68)

This can be solved by noticing that the integration factor is ¢*** (Frost and
Pearson, 1961), that is,

d
a (CBek”) — kICAO et(kz—kx) (169)
It follows that
k,C
Cp = (e —e™) (1.70)
1 1

Here it has been assumed that Cz = 0 at t = 0. Equation 1.68 can also be
solved by first finding the auxillary solution C¥’ from

dcy
dt” + k,C =0 (1.71)
to yield
CP = qe* 1.72)

where o is the integration constant. Next we have to find the particular
solution C§ from eq. 1.68 by letting C¥’ = fe~*'* to obtain

kICAO

b=t-n

(1.73)
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The general solution of eq. 1.68 is then

Cg=C¥ + CP =ae *" + JiCao. e ki (1.74)
ky — ki
The integration constant o can be determined by using the initial condition.
This method can be applied to linear high-order differential equations. The
term C. can be found by noticing that (dC ,/dt) + (dCg/dt) + (dC/dt) = 0
or C, + Cg + Cis a constant.

Another method for solving the linear differential equations often appears
in the literature. The essential point of the method is to replace simultaneous
differential equations by a higher-order differential equation. For example,
C 4 can be eliminated by using eqgs. 1.64 and 1.65 to yield

d*Cg
e + (ky +k2) B 4 kiky,Cp =0 (1.75)

which can easily be solved by letting Cy = fe~* to find A = k, k,, that is,

Cp = Bre ™" + Bye ™ (1.76)

The integration constants f/; and 8, can be determined by using the initial

conditions and by putting eq. 1.76 back into the original differential equations.
Next we consider (Weston and Schwarz, 1972)

ku

A+ C P (1.77)
B+C —— @ (1.78)
The corresponding rate equations are given by
dC 4
4= _k,C4C. 1.7
o 4 (1.79)
dc
_dti’ = —k,CgC, (1.80)
dC
—€ = —k,C,C, — kyC3C. (1.81)
dt
To solve these equations we take the ratio between eqgs. 1.79 and 1.80
dC, k,Cy
— 4 _ 1.
dCg  k,Cp )

which can easily be integrated

Ci ki Cp (c,, )
lo = "log s Cgp = Cgol —— (1.83)
BCio K % Cho &= “Bo
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where C,, and Cp, are the initial concentrations and r = k,/k,. Since
dC./dt — dC ,/dt — dCpg/dt = 0, we obtain

Cc = Ceo + (Cy = Cyo) + (Cp — Cpo) (1.84)
or
Cai\
CC = CCO + CA - CAO - CBO 1 - |=— (1.85)
Cao

Substituting eq. 1.85 into eq. 1.79 and carrying out the separation of variables,
we find

Cao dc,
f 7 =kt (136)
Ca CA[CCO + Cy— Cyo — Cao{l - <C—A) }]
A0

Analytical expressions of eq. 1.86 can be obtained only when r is 4 or an
integer. Otherwise the numerical calculation should be used.

1.5 STEADY-STATE AND EQUILIBRIUM APPROXIMATION

Although we have presented a number of mathematical methods to solve rate
equations in chemical kinetics, very often one may run across rate equations
so complicated that they cannot be solved analytically by using any of the
conventional methods. In that case the steady-state approximation or
equilibrium approximation are often used. To illustrate these approximations
we consider the reactions given by eq. 1.63 and the Lindemann scheme for
unimolecular decompositions.

A+M == A4*+ M (1.87)
A — , p (1.88)

We shall assume that the concentration of M is much bigger than that of 4.
In that case we can conveniently rewrite eqs. 1.87 and 1.88 as
ky k,

A —&—— B B —“ p (1.89)

ko

where k; = kKiM, k_, = kM and B = A*.
Let us first consider the reactions given by eq. 1.63. To test the validity
of the steady-state approximation as applied to B, we compare the exact



