Ly W
e

THE SOFTWARE FACTORY

A Fourth Generation Software
Engineering Environment

Michael W. Evans

WILEY

A WILEY-INTERSCIENCE PUBLICATION
JOHN WILEY & SONS

New York « Chichester « Brisbane « Toronto * Singapore

Copyright © 1989 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Section 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data
Evans, Michael W.
The software factory: a fourth generation software engineering environment
Michael W. Evans.
p- cm.
“A Wiley-Interscience publication.”
Bibliography: p.
Includes index.
ISBN 0-471-01192-4
1. Software engineering. 1. Title.
QA76.758.E98 1988
005.1—dc19 88-10819
CIp

Printed in the United States of America

10 987 65 43 21

THE SOFTWARE FACTORY

A Fourth Generation Software
Engineering Environment

To Victor and Irene Rome; Parents and Friends

Foreword

The software manager of a large project is faced with a bewildering set of
choices in establishing an environment. Competing and contradictory
claims emanate from a variety of sources, including vendors, technical
literature, the user for whom the project is being developed, different
factions within the project development team, and so on. There is no single
product, book, or managerial style that will lead magically to a project
development environment in which all parties are automatically made
aware of the myriad of details that go into day-to-day project decision
making. Such details include, but are by no means limited to, current
project status, schedule, technical products, managerial decisions, quality
assurance pronouncements, change requirements, staffing levels, hard-
ware and software configurations, and test results.

In the absence of a single product panacea that would make life simpler
for the project manager, Michael Evans has produced a book that gives the
manager the perspective, information, and courage to formulate a cohe-
sive, uniform project structure, supported by a workable software envi-
ronment, in which different parts of the team work toward common goals.
This book also allows the manager to deal intelligently with vendors, in
terms of deciding which software tools would enhance productivity, and fit
within the framework of the environment.

The book has utility far beyond the project manager. Students studying
computer science or business, for example, may wish to know what the
workaday situation is like in the business and industrial world, and in
particular, how this world differs from academia, and how he or she may

vii

viii FOREWORD

make the transition from student to professional software engineer with a
running start. This book contains a wealth of information that answers
such concerns. Therefore, this book could be of value as a text in college
courses on data processing, whether taught in a business department,
computer science department, or an economics department.

Likewise, customers of major projects, who may have a great deal of
approval authority over the environment, will benefit from this book. They
will have a focused way of evaluating proposals, be able to judge the
quality of the winning management team, and have a forceful, well-
thought-out perspective on major environmental issues.

LARRY YELOWITZ

Preface

Programming is approaching the software factory concept, when program
modules are the engines, tires, and transmissions produced; design docu-
ments are the blueprints; and operational documents are the shop repair
manuals. In the software factory, analysts design while programmers man-
ufacture and repair software systems. Analysts no longer create—they man-
ufacture, and quality control is an important part of that process.

This optimistic view of the state of the software industry was presented by
Jay Arthur in his excellent book Programmer Productivity (1983). Unfortu-
nately, the reality is that software development is still, in large part, a
technical art form.

The promise of an integrated environment for the development and
support of software approaching an assembly line has proven to be an
elusive geal. The software environment was first envisioned by Jack Mun-
son while at Systems Development Corporation during the late 1960s.
Subsequent work by Thompson Ramo, Woolbridge and IBM advanced this
concept, yet the promise of more predictability in the software develop-
ment workplace was not fulfilled (Brateman, 1975). Even the Japanese,
who have invested heavily in the development of this concept, have yet to
fully realize the benefits (Wasserman, 1981).

The software engineering environment is more than just a suite of tools.
It is an integration of methods, data products, development practices,
life-cycle and documentation requirements, assurance practices, business
and management requirements, and automated support. These compo-

X PREFACE

nent parts, when applied to a software project, ensure a smooth and
complete development or support framework.

This book describes the fourth-generation software engineering envi-
ronment and demonstrates why the concept of integration is so difficult to
implement. This concept is a vision of the future. It has not been fully
realized despite the many descriptions of “integrated environments” and
successful experiences using automated software methods that are pre-
sented in the literature. Application of the development methods described
in this book will provide an environment in which quality software can be
produced in a predictable, controlled, and productive fashion. The ap-
proach recognizes the need to integrate the various elements of the soft-
ware development process with software management and control
procedures. The environment described is disciplined and provides the
means by which quality, productivity, and product acceptability will be
engineered into the software life cycle.

WHY DO WE NEED THE SOFTWARE ENGINEERING
ENVIRONMENT?

This book describes the components that must be considered when de-
fining, configuring, and applying the software environment. The software
engineering components presented are conceptual; they apply to software
engineering projects in general, irrespective of the approach used to sup-
port the project. The software environment presented in this book is a
means of organizing the concepts into a cohesive and organized structure
for software development and support. It is not strictly a toolset, a method
for development, or a structure of data management or control.

The need to meet the software challenge successfully touches every
major business and government entity. According to Barry W. Boehm in
his book Software Engineering Economics (1981), during the mid-1980s more
than 40 million workers—40% of the U.S. labor force—depended on com-
puters to some degree in their work.

This proliferation of computers has brought with it a disturbing realiza-
tion: Unless the software development process becomes more productive
and the software products more predictable, the computer revolution will
be geared to the pace of software development. This situation is unaccept-
able. Our software development resources must be made more productive.

Many unique, innovative, and often esoteric software development
techniques are being developed by industry, government, and academia to
meet the software challenge. Each of these is attempting to fulfill the
elusive dream of increased productivity while improving the quality of
software products and services. Each of these techniques centers on a
single or limited set of activities that take place during development. Inte-
gration of these techniques into a cohesive software development environ-
ment has been neglected.

WHY DO WE NEED THE SOFTWARE ENGINEERING ENVIRONMENT? xi

The lack of software project integration has resulted in frequent, and
often dramatic, shortcomings in software technology. These problems too
often reduce the effectiveness of the software project. They restrict the
benefits of software innovation and limit the application of technology to
actual development situations.

Can we afford this continued software technology shortfall? Barry
Boehm states that the annual industry and government software expendi-
ture was $40 billion, or 2% of the gross national product (GNP) in 1984. The
need for software development resources is increasing much faster than
the general economy; it now represents the bulk of the computer and
information-processing industry. This industry is projected by Boehm
(1981) to be 8.5% of the GNP by the mid-1980’s, growing to 13% by 1990.

Concurrent with this rise in demand has been a dramatic decline in
hardware costs. Increased demand coupled with declining costs has re-
sulted in general and increasing use of computers throughout society, not
just in the technical disciplines. This dependence on computer products
indicates an increasing dependence on software.

The spiraling demand for computers has focused attention on the factors
that inhibit software development: inadequate methods, and poorly de-
fined, imperfectly integrated software development practices and tools.
These problems are compounded by poorly defined or rapidly changing
user requirements. In these areas, the software industry is like the cob-
bler’s children.

The basic software development resource is labor. Despite the extensive
demand for software, there is and will continue to be a critical shortage of
software professionals—those who plan, develop, test, and support soft-
ware.

According to the Department of Defense, there are 50,000 to 100,000
fewer qualified software professionals than are required to support current
industry needs adequately. Projecting this shortfall against the increasing
demand for software, by the end of this decade the shortage is predicted to
increase to between 860,000 and 1 million software professionals. The only
alternative to reducing our expectations because of personnel shortages is
to enhance the productivity of those that we employ (Boehm, 1974).

To date, our efforts to meet this challenge have been relatively unsuc-
cessful. Increasing software development productivity and product quality
requires improved use of computers. Such optimization of computers, in
turn, depends on the availability of adequate software. Poor software tools
and a lack of common understanding of the components and interactions
that exist in a software project make it impossible to solve development
challenge through automated means.

In the private sector, when we fail to address the software problem
adequately, product and service quality and customer responsiveness suf-
fer, the bottom line is affected, and the reputation of the company invari-
ably suffers. Government impacts may be even more significant. Software

xii PREFACE

development problems may affect national defense, jeopardize human life
or safety, reduce national preparedness, and cause delays in regulatory
actions. Taken to an extreme, the effects of poor software can threaten our
national existence if one considers our reliance on computer systems.
Solving the software challenge requires that we treat the many disci-
plines associated with development as an integrated engineering strategy,
not a technical art form. Using the data products that are produced during
the development process, this strategy must tie the software planning,
development, and support activities together. The software environment
must integrate the use of disciplined methods and procedures supported
by appropriate tools. This approach acknowledges that software develop-
ment is far more than the writing of computer programs. It is the recog-
nition, tailoring, integration, and application of a variety of disciplines to a
consistent life-cycle approach to software development. It must take into
account the analysis and specification of requirements, design, program-
ming, testing, integration, and, finally, support of the software product.
This is the core of fourth-generation software engineering technology.

THE COMPLEXITY OF THE SOFTWARE ENVIRONMENT

This book describes the issues to be raised, the questions to be asked, and
the problems to be addressed when establishing a consistent and repro-
ducible fourth-generation software development environment. It describes
how to link methods together, how to plan the development and control of
data flow and the application of technology, and how to address the issues
that affect development productivity. It is intended for software engineers
and project personnel who are concerned with the integrity of the products
and processes that are part of software development.

The concepts presented are theoretical but are not beyond the current
state of the art or practice. The environment described in this book is based
on the rigorous application of accepted development methods that can be
applied to small projects, large development or support projects, and a
variety of projects with different technical requirements. The concepts
must be adapted to specific project situations. The vision of the factory
environment presented here does not represent a universal solution to the
problems plaguing the software industry. These can be solved only by
understanding the specific, unique problems facing each project and mak-
ing a commitment to address them in a consistent and focused manner.

Morgan Hill, California MicHAEL W. EVANS
February 1988

REFERENCES xiii

REFERENCES

Arthur, Lowell J., Programmer Productivity: Myths, Methods and Murphology.
New York: John Wiley & Sons, 1983, p. 127.

Bratman, H., The Software Factory, Computer Magazine, Vol. 8, No. 5, 1975,
pp- 28-35.

Boehm, Barry, Software Engineering Economics. Englewood Cliffs, N.]J.: Pren-
tice-Hall, 1981.

Boehm, Barry, et al., CCIP85. Washington, D.C.: Department of Defense,
1974.

Wasserman, Anthony, Toward Integrated Software Development Environ-
ments. Tutorial: Software Development Environments. IEEE Computer
Society, Compsac, 1981, p. 16.

Acknowledgments

This book is a reflection of the author’s experience. Much of this experience
is a result of the author’'s work with NASA over the past 4 years. The
information system life cycle and verification approaches described are a
direct result of this work. I would like to thank Bill Wilson and Don Sova
of NASA headquarters, as well as Sue Voigt, Judy Steinbacher, Dr. E. D.
Callender, and the many others whose creative ideas have been used in
this book. This experience has proved invaluable and, hopefully, is re-
flected in the chapters that follow.

This book would not have been possible without the help and support
of my wife, Charlotte, who spent hours sprucing up the manuscript, and
reworked certain pages repeatedly to make this book possible. I would like
to acknowledge the many persons who helped in the production and
review of the manuscript: Barbara Zirolli of Expertware, whose expertise in
configuration management was freely offered and is incorporated in the
text; Jack Bond of the Department of Defense; Candyse Barr of ESL Inc.,
whose review of the text and inputs on life cycle management were essen-
tial and greatly appreciated; and Gary Furr, again of Expertware, whose
early editing got me off on the right foot.

Jack Garman of NASA and Priscilla Albright reviewed the manuscript.
Their comments, although painful, were valuable and essential.

Dr. Larry Yelowitz of the Ford Aerospace Corporation provided techni-
cal input regarding descriptions of methods and was a constant source of
encouragement.

I would like to offer special thanks to Barbara Christoph, whose encour-
agement and review were critical to the book’s development. Most impor-

xXv

xvi ACKNOWLEDGMENTS

tantly, I would like to thank E. D. Callender, who had the courage to tell
me that the early manuscript was no better at 31,000 feet than it was on the
ground. I hope that I have addressed his concerns.

Finally, I would like to thank Maria Taylor, my editor at John Wiley &
Sons, for the encouragement and support that made the book possible.

M.W.E.

Contents

PART ONE. THE SOFTWARE FACTORY: A FOURTH

GENERATION SOFTWARE ENGINEERING
ENVIRONMENT

The Classical Software Environment

Harry Price’s Software Engineering Environment
The Engineering Dilemma

The Software Environment Legacy

Software Engineering: A Historical Perspective

The First Generation

The Second Generation

The Third Generation

The Fourth Generation

The Engineering Revolution

The Evolving Engineering Process

Fourth-Generation Software Engineering
Narrow-Spectrum Environments
Broad-Spectrum Environments
Context Environments

The Software Engineering Environment

The Information System and the Software Engineering Process
The Fourth-Generation Software Environment
The Software Engineering Strategies

—

[,)

—
O 0VON N

11
16
16
20
22
22
23

25

26
29
30

xvii

xviii CONTENTS

Baseline Development
Engineering Strategy
The Software Environment Considerations
Data Requirements in the Engineering Environment
Project End Products
Specification Data
Software Systems
Process Documentation
Engineering Data Relationships
Strategy Selection
Project Adaptation of the Engineering Environment
Application of the Software Development Strategy

4. What Is the Fourth-Generation Software
Engineering Environment?

The Need for the Fourth-Generation Software
Engineering Environment
The Fourth-Generation Software Engineering Environment
The Engineering Ring
Software Engineering Discipline
Data Management
The Environment Interfaces
The Life-Cycle Ring
The Product Assurance Ring
The Automated Support Ring
The Business and Control Ring
Assessing the Environment
Easy Answers to Complex Problems

PART TWO. THE SOFTWARE FACTORY AND THE
ENGINEERING PROCESS

5. The Engineering Process

The Software Development Methods
Selection of the Environment
Software Environment Engineering Methods
Functional Programming, Formal Specification, and
Rapid Prototyping
Requirements Specification
Prototyping
Structured Analysis
Object-Oriented Development
The Jackson System Development (JSD) Method

31
31
32
35
35
36
36
36
36

39
41

a4

46
46
47
48
49
50
50
52
53
54
55
57

59

61

61
64
64

66

68
68
69
70

CONTENTS

PAMELA
Coding Methods
Testing and Integration
Engineering Verification
Engineering Reviews
Formal Reviews
Selection of Characteristics and Methods
Technical Selection Criteria
Project Application Criteria

Software Data Relationships: The Center of the
Software Engineering Environment

Data Product/Methodology/Life-Cycle Relationships
The Development Models
The User Application Model
The Project Management Model
The System Concept Model
The Support Model
The Logical Software Model
The Software Development Model
The Physical Software Model
Data Model Relationships
Relationship of Data Products to Documentation

The Software Engineering Environment Data Base

The Software Development Process and Data Relationships
The Basic Engineering Data Relationships
Defining the Software Engineering Data Base
Components of the Software Development Data Base
Computer Hardware Considerations
Data Base Management Software
Data Controlled by the Software Environment
Data Base Users
Types of Data Base Management Systems
Relational Data Base Systems
Hierarchical and Network Data Base Systems
Hierarchical Versus Network Organization of Data
Data Access Delays and Overhead
The Data Base Management Interface

Data Control in the Software Engineering
Environment

The Data Environment

xix

71
72
72
75
75
77
77
78
81

83

86
86
87
87
90
92
92
94
97
98
100

107

108
109
110
11
111
112
113
114
117
117
117
118
118
119

120
121

