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. TH. S8KOLEM

PEANO’S AXIOMS AND MODELS OF ARITHMETIC

Introduction

More than 30 years ago I proved by use of a theorem of Léwen-
heim that a theory based on axioms formulated in the lower
predicate calculus could always be satisfied in a denumerable
infinite domain of objects, Later one has often expressed this by
saying that a denumerable model exists for such a theory. Of
partioular interest was of course the application of this theorem
to axiomatic set theory, showing that also for this an arithmetical
model can be found. As I emphasized this leads to a relativisation
of set theoretic notions. On the other hand, if one desires to develop
arithmetic as a part of set theory, a definition of the natural
number series is needed and can be set up as for example done by
Zermelo. However, this definition cannot then be conceived as
having an absolute meaning, because the notion set and particularly
the notion subset in the case of infinite sets can only be asserted
to exist in a relative sense. It was then to be expected that if we
try to characterize the number series by axioms, for example by
Peano’s, using the reasoning with sets given axiomatically or
what amounts to the same thing given by some formal system,
we would not obtain a complete characterisation. By oloser study
I succeeded. in showing that this really is so. This fact can be
expressed by saying that besides the usual number series other
models exist of the number theory given by Peano’s axioms or
any similar axiom system. In the sequel I will first give an account
as short as possible of my old proof of this, my exposition now -
being- & little different in some. respects. After that I intend to
show how. models of s similar kind can-be set up in a perfectly
construotive way when we consider some very restricted  arith-
metical theories.
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§ 1. Preliminary Remarks

We may set up a theory of natural numbers by adding to the
predicate caloulus of first order some constants namely the in-
dividual constant 1, the predicate = and some functions namely
the successor function, denoted by an apostroph, and addition
and multiplication. Further we may assume the non-logical axioms

z * 1 . '
@'=y) > (@=9) |
(y #.1) > (Bx)(y=2)

z+1 =2

vty =(x+y)

-1 =2

oy =ay+ =
x =X

(x=y) > (U(y) > U(=))
U(1)& (z)(U(z) - U(x')) - Uly).

~

Here U denotes an arbitrary propositional function. It is most
natural and convenient to let the propositional functions be those
which can be constructed from equations by use of the connectives
&, V. and — together with the quantifiers extended over in-
dividuals, i.e. numbers. The two last axioms containing U are
- meant as axiom-schemes so that every individual case is an axiom.
This formal system of arithmetic contains Peano’s axioms. Other
systems could be used as well, for example the system Z, in
Hilbert—Bernays [1], p. 293.

Every proposition is equivalent to one which is built by use of
‘quantifiers on an elementary expression, namely built by use of
&, V. and — on equations with polynomial terms on both sides
when we replace z’ by z--1. However, we may omlt the negation,
because x ~y. may be replaced by (Ez)((z= y+z) V(y=2x+2)).
Further any proposition constructed by use of & and V frem
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equations is eqmva.lent to a single equatlon because of the equiva-
lences ‘

(1) (@a=0b)V (c=d)— (ad+bo=ac+bd)
{2) (@a=0b) & (c=d) <> (a®+b?+ c2+d?=2ab+ 2¢cd)

Thus every proposition is equivalent to an expression beginning
with a sequence of quantifiers followed by an equation between
two polynomial terms.

As to the arithmetical functions many more are deﬁna.ble than
the polynomials. Indeed let the proposition

(3) (@) - - (B NEYPA (R, . - ., T Y)

be true. Here 4 is a propositional function which may be a.rbltra.nly
comphca.bed It may for example still contain quantifiers. The
word true may mean elther provable in the system or that the
statement is assumed as a further axiom. Now it is well known
that we can prove by use of the mductlon axioms that if

(By)A(y) A

(BEY[A(y) & ()(A(z) V (y < 2))]

follows which means that every non void set of numbers contains
a least element. Therefore from (3) -follows :

(@), - . (@ HBYNA(2y,. . ., Tary Y) & (2N Ay, - ., Ty 2) V (¥ < 2))).
Then one and only one y here exists correspond.lng to a glven
m-tuple ,...,%,. This y is therefore a function (@5 @)
Using this function we may write (3) as a formula oonta.lmng no
other quantifiers than those whlch perha.ps ocour in A(xl, s Xy Y)
namely as B

is true, then

. A(a]_, . 9am’f(als . 9am))

Repeatmg this intmodnctmn of functions one finds (see my paper '
“Uber die Nichtoharakterisierbarkeit der Zahlenreihe ete . [2],.,
that every. eorrect formula :

(@) - @) Eyy). (By)z). - (2 ,)(Eu;)-»-(Eug)-f R T
A e Y Y Ze - L))
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may be written with free variables only

A(ay,. ., 0y, fl(“v' R B fn(al’ . @y); by, .
~ (a!.! vs Oy bl) .y ’): )

Sinoe for exa.mple we have the oorrect formula

) @)y)(@=y) V (B2)((= =y+z) v (yu-s+z)))
'a funotion exists, usually written |z—y|, such that
| (a=b)V(a=b+|a;b|)V(b=a+|a—b|) |

is a correct formula.

Let F be the set of all arithmetical funerblons in this sense. It is
easily seen that F is closed with regard to the operation called
nesting or substitution. Let for example z={(x, y) and y=g(x) be
respectively equiva.lent to A(z, y, z) and B(y, ). Then it is evident
that z=f(z, g(v)) is equivalent to C(x, u, 2), where C(z, u, z) is the
propositional function

(By)A(z, v,7) & By, w).

It is clear after these preparations that every statement can
be reglwed by an equivalent equation betweén two elements of
F containing only free variables.

It is evident that all true formulas may be hsted as an enumerated
sot . To each of them we may find an equivalent equation whose
both sides are functions belonging to F. Therefore in order to
prove the existence of a model N’ different from N for the set §
of statements it will suffice to prove the following theorem.

- - Let 8 be a set of equa.blons whose both sides are elements of a
denumerq,ble set of functions olosed with regard to nesting.
Assuming the equations belonging to § all valid for the natural
number series N we may define a greater series N* such that by
suitable extension of all notions concerning N to oorrespondmg

" ones in N* all equations in § are also valid for N*. In order to .

establish this I need an arithmetical lemma which I shall prove
first. It ought to be added that this procedure is sufficient for
our purpose because it will turn out that the equivalences we
used above will remain valid in N*.
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§ 2. An Arithmetical Lemma’
We oconsider an enumerated sequence of arithmetical funotlons

(4) hb), fs(®)s « ..
Let N, N® N® be resp. the subsets of N for which

h#)<fs(®), A(t)=1s(t), H(#)> (D).
One at least of N, N®, N® is infinite. Let N, be that with the
least; upper index which is infinite. Then there are for each # & Ny

at most 5 posaible cases for fy(f) in relation to f,(f) and £,{?), namely
if for example N, is N®

L&) <h(t), K(®)=F®), L{E)<fo(t)<[s(®),
f3(8) =1}, fo(8) > Folt).

If N, is N® g0 that f,(f)= - foft) for all t € N, we have only 3 possible
cases namely .

i) < fl(t)g fs(®) =1 (@), fa(t) > f1(t)-

Let NV, N®, N"’ and eventually N, NP denote the subsets of
N, for whloh the ‘'mentioned relatlbns take place. Then again one
at least of NIV, N, .. is infinite. We let N, be the NI with least r
which is inﬂnite. This procedure is ocontinued so tha.t we get an
infinite sequenoce of infinite subsets of N

N=N03N13N’

ForallteN,_lthesamelfeluhons < and = willtukepla.ce
between £,(¢),. .fu(t).

Now let g(n) be the least number in N, Then it is evldent.
that if .

.

flg(n)) £ fa(ﬂ(”)),
where‘n=mux’(a, b), then we have accordingly

fag(®)) £ fylg(®)

for all ¢ > n. Thns the following lemma is proved: '
If (4) is an mﬁnite sequenoe of arithmetical functions, an snth-
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. metical funotion g(?) exists such that for any pair 4, the same
relation <, = or > takes place between f,(g(f)) and f(g(@®) for
all ¢>max (5, j). The function g(#) is steadily non-decreasing. In
our applications of this lemma we will assume that all poly-
nomialg, in particular all constants, occur in (4). Then one sees
that the values of g(f) cannot possess an upper bound, because
the intersection of all N, is the null set.

'§ 8. The Proof of the Exisfence of N*

- Let. F be an enumerated set of arithmotical functions of one or
‘more variables containing besides the suecessor, addition and
multiplication all funotions occurring in the left and right terms
of a set 9 of equations with only free variables supposed true for
N, F further being supposed closed with regard to nesting. Let
F; be the denumerable subset of F consisting of the functions
f+t) of one variable. Then relations < and = can be defined
between the elements of F, in the following way. According to
the lemma a function g(f) exists such that for any two ¢ and j one
of the three relations

Fg(D) <)), f;(g(t)) f{g®), fg(8))>[Ag(®))
holds for all ¢{>max (z, §). I put respectively

f4<fia f‘ ff’ .fi>f7

in these three cases. It is easy to see that the relation = thus
defined is- an equivalence relation and that the relation < is
asymmetric and transitive. The different equivalence classes of
the elements of F, defined by = shall then constitute the diverse
elements of N*. :

In a very simple and natural way every function f(z,. ., %,) in
F can be extended to mean a function in the domain N*. Indeed,
if every X,(t) for r=1,..,n is € F,, then

Y=f(X1(t))- vy Xn(t))
is € F,, because F, is closed with regard to nesting. Further one
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easily sees that if X ,(f) and X _,(t) for r=1,.., n are the same
elements of N*, then

lef(Xl,l(t)v R Xn,l(t))
and ,

Yo=1(Xy,2(t),- - -, Xoalt))
denote the same element of N*. Thus f also defines a function in
the domain N*. Clearly all elements of N also belong to N*. Indeed
they are furnished by the f in ¥, which are constants.

Further, since the relation = has been defined in N*, all the

equations constituting S have a meaning in N*. It remains to see
that they are all valid in N*. Let us consider an equation in . It
has left- and right-hand terms with some free variables, say
ay, ay, ... Replacing these by arbitrary elements

oy(t), oalt), -

of N* we get an equation in N*. Since this is valid for every value
of t in N, it is valid for every # when ¢ has been replaced by g(t').
A fortiori the equation takes place for all ' > the maximum of
the indices which the left- and right-hand sides of the equation
possess in the sequence fy(?), fo(f), .... Thus, remembering the
definition of = in N*, we see that the equation holds good for
arbitrary elements in N*.

Now I will prove that the equivalence (1) remains valid in N*.
The correctness of the implication

(x=p) V (y=26) = (x8+fy= oy +p9)

for arbitrary elements «, 8, y, 6 of N* is seen so easily that I may
confine myself to the treatment of the inverse implication. Let
a8+ By=oy+ B6. This means that for all ¢'>h say and i=g(¥)

(5) L B8+ B () = a(Ey(t) + A()8().

The number & ma.y be chosen as the maximum of the indices of the
left- and right-hand sides of (5) in the sequence (4). According
to (1) this implies that for every t'>% and t=g(t)

 (x(8)=pB(2) V (p(8)= 6(2))-
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- Now let %, be the maximum of the indices in (4) of the functions
(1), B(2), p(8), 8(¢). Then if #' is > max (h, h,) either «(g(¥")) = Blg(?'))
and then we have « =4 or p(g(t'))=&(g(t')) so that y= 3. Henoe (1)
remains valid in N*. Similarly we can show that (2) remains valid.
Let us now assume that [a—b| ¢ F. Then if &, § are ¢ N*, we
have for all ¢ (a(f)=B(0)) V (e(t) = B2+ loc(t)— BN} V (B(®)= o)+
+ |&(t) — B(#)|). Putting t=g(¢’), the last formula is valid for all #.
Let h be the maximum of the indides of the two sides of the
three equations. For a value of ¢ >% one of the equations is ful-
filled. Then just this equation holds for all greater values of ¢'.
Therefore . we have either a=p or a=fF+|x—p| or =+ |x—p|.
A consequenoe of this is that the equivalence between « 3£ f and
(Bx){(x=p+z) V (B=a+x)) holds good in the theory of N™.
Let A(a, f(a), b, g(a, b)) be a free variable formuls equivalent
_ to the true formula

(@)(By)(z)(Bu)A(z, ¥, 2, )
in the prervmusly expla,med sense, Then as I have just shown

Ax, f(x), By 9(0‘s ﬁ))

is true in N* and hence also. .
@) By ) Bw) AR, ¥, 2, w),

where z2',y’,2', w' are variables extended over N*. This means
that aleo every formula containing quantifiers and true concerning
~ N is also true for N*. In particular we may remark that the in-
duction scheme remains valid for N. Now let us start with the
general formula -
= )(Ey lepley )A(x v, 7, w)

and as prewously explained find an equivalent free variable formula

Alw, f(), B, §(ox, B)).

- Then according' to the determination of f(x) we have f(x) < f(«).
On the other hand the definition of f in N yields for every ¢ that
- Heft)) < fle(t)), whenoe f(x) < f(x). Hence the formula

A(x, f(e), B, §(exs B));
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but according to the determination of § the relation §(«x, 8) <g(x,8)
takes place for arbitrary « and g in N*. On the other hand we
have for all ¢ according to the determination of g(a, b) in- N that
glx(®), (1)) < g(ol?), B(t)) with the consequence g(x, f) < §(x, f).
Thus the functions f and g retain after the transition from N to
N* their roles as least elements with the considered properties.

The transition from N to N* may of course be repeated 80 that
we get a model N** and s0 on.

| § 4. Some more Special Results

I would like to add some remarks on the setting up of models
of certain fragments of number theory, in particular fragments
of recursive arithmetic. In these simple cases the definition of non-
standard models can often be established in a perfectly constructive
way.

Let us for example conmder the following theory T The state-
ments of 7' shall be built by &, V and — from the propositional
functions z<y and z=y assuming the classical propositional
caloulus and the axioms concerning =. The recursive definitions

-of addition and muitiplication shall belong to 7', the successor
being here simply denoted by addition of 1. Further we shall have
the recursive definition of < namely
) a<0 is always false
(6) : (a<b+1)«> (a<b) V (a=b). ,
Algo the substitution rule shall be valid, i.e. from a correct formula |
we always obtain a correct formula by substitution of a va.mble
(variableg) by a numerical term (numerical terms).
Finally we assume the induciion scheme-
- U0, b,¢..)
U@,b,c,..) > U@+1,b,¢,..)
Ua,b,¢,..)

It is well known thiat we can derive in 7' the ordmary laws of
addition and multiplication, namely the associative, commutative and
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distributive laws, and the ordinary laws. concerning the relation
<,.namely -asymmetry, transitivity and the theorems

Mm . {a<bd)V(@=d)V(@>b)
(8) ( (a<b) (a+c<b+c) ,
(9) (c>0)&(a<b) (ac<be)..

On the other hand many formulas expréssible in 7' ‘and va.hd for
the natural numbers are probably not provable in 7% Thus for
 example nobody has ever succeeded in provmg on th;s basis the
statement

(10) (@=0) V (b=0) V(a=<2b=) V (@*>26%

which means tha.t V2 is matlonal ,
Now let N’ denote the set of polynommla

f(t)=a, t"+ + a,, all a, integers,

with all a, > 0 and a,>0 resp ay = 0 when n=0. If g(§)=b,"+
+. +bo, I write f=g when and only when n=m and, for all
r,a =b,. Further I write f<g, if n<m or n=m and a, <b for
the greatest r for which a, differs from b,. This deﬁmtlon can
also be expressed thus: We put f<g, f=g, f> g according as
fOy<g(t), H)=g(t), f(t)>g(t) for t=f(1)+g(1). Then the same
relation takes place also for all greater ¢. However, I will not enter
upon the proof of this. We may also with the same effect say that
f<g or f=g according as always f(f)<g(?) for sufficiently great ¢
or always f(t)=g(t). It is clear that if addition and multiplication
are defined for the polynomials in the usual way, f(t)+1 will be
the suocessor of f(t), i.e. (8) is satisfied for N’. Further the formulas
of recursive definition of addition and multiplication remain
valid in N’. Also (7), (8) and (9) are easily seen to remain valid.
 Finally I will prove that the induction scheme will remain valid
- in N'. Indeed, let the two formulas

' ueo,py, ...)
O, 87, - )V Ula+1,B,7, ...)

be -correct, the variables «, 8, y, ... ranging over N'. Then they
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are correct by restriction of the range of variation to &N which is
contained in N”, the constants being some of the elements of N'.
We may write thls . _ :

U(O, b; c, . .)  .

" U(a, b,¢, ..)VU(@+1,b,ec. ),

where a, b, c, ha,ve N as domam of va.ria.tmn 'l‘hen the mduct-lon
scheme for N ymlds
Ufa, b, ¢, ..).

Let us here replace a, b, ¢, .. by variables «, f, y, .. ranging over
N’. Since U(«(?), B(¢), -..) is obviously true for all ¢, it is true
for values of ¢ so great that the atomioc relations < or = building
up the expression U remain. settled, und ‘that means that

U(a,ﬂ bz )

is true. Thus the induction scheme remains valid for N ‘. As a
consequence of this every: provable formula. in 7' must also be
provable in the theory 7" with the variables ranging over N’
instead of NV and obtained by taking into account the definitions
above connecting 7" with 7'

I will insert the following remark. If instead of only the poly-
nomials with integral coefficients we take all those having integral
values for integral values of the variable we get a domain N,
where not only addition and multiplication can be carried out with
retention of the usual algebraic rules, but also the general summation
Z can always be performed. When F(7') is & function in N, then

Z‘ F(T) 1s a function G(A) in N' Or in other words a umquely

=@

determmed T) ex:sts suoh that G(O)=F(0) and
G(T+ 1)=(T)+ F(T+1).

If for exa.mple F(T)==1 then AT)=T, and if FT)= T then
Q(T)=1/2-T(T +1). It is clear that when T'e Ny, algo 1/2T(T + l)eN
Further, if F(T)=1/2T(T+1), G(T)—l/6T(T+ INT+2) ete. I
confine myself to this hint.

One must expect that N’ will cease to be a model for a more
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extended arithmetical theory than T'. Let us consider the theory
T, which arises when a function § defined by the equations

30=0, da+ 1)==a

is added to 7'. Simultaneously of course the U in the induction
- scheme then shall be understood to demote any propositional -
function that can ‘be built when the function 4 is also taken into
account. It is easy to see that N’ is not a model for T. Indeed one
" proves in Tl the theorem .

(a=0) V (3(a)+1=a).

This means that every element exoept 0 has a predecessor, but
this is obviously not true for N'. However, we get a model N” of .
T, by omitting for 0=r<n the requirement a, > 0 for the poly-
-nomials f(t), retaining a,>0 and if =0 also a, == 0.

Let T, be the theory obtained by adding to T, the recursive
deﬁmtlon of the function a = b namely

a = 0=a, a-=({b+1)=0da -—b)

" Then i is seen that N” is still a model for 7',. Just as the funotmn
@ = b in the case of N means a—b when a>b and 0 when a < b,
this is also true in 7', concerning N when the true propositions of
T, are those that can be derived from the provable propositions
of T3 by use of the definitions connecting 7', with 7). :
However, N” again ceases to be a model if such a function as
[#/2] is added to T, I assert that a model N” for the theory 7,
. arising from T, by adding the function [a/b], defined for 5> 0, can
- be chosen as the set of all polynomials where all a, are rational
- (eventually fractional) numbers, a, (the highest ocoefficient) > 0
and a, non-negative integer when 7 =0. Instead of setting up the
- recursive definition of [x/] for N” one can show that for arbitrary
f(t) and g(t) there are umquely determmed polynomials g(t) and
r(¢) such that identically in ¢

f&y=g(t)a(t) +(2) and 0 < < r(t)<g(@). ‘
* Hence after the definition of < and = between the elements of



