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After the completion of our book the first named author,
Vladimir I. Gurariy, died. The world lost a great mathematician
and I lost a close friend.

Wolfgang Lusky



Preface

Let A = {\;}7, be an increasing sequence of non-negative numbers:
O0=X <A < Ay < ...

Moreover let M(A) = {t*}2° be the sequence of the functions ¢t** on [0, 1]
and let [M(A)]g be the closed linear span of M(A) in a given Banach space
E containing M (A). We call M(A) a Miintz sequence and [M(A)]g a Miintz
space.

In our book we shall be mainly concerned with £ = C := C]0,1], the
Banach space of all realvalued continuous functions on [0, 1] endowed with the
sup-norm, and E = Cj := Cy[0, 1], the subspace of C consisting of all those
functions f € C' with f(0) = 0. Furthermore we deal with E' = L, = L,[0,1],
1 < p < o0, the space of all (classes of) realvalued measurable functions f on
[0, 1] with

1 1/p
||f||,,,,=(/ If(f)l"df) coo E1gp<on.
0

If p = oo then we take for ||f||,,. the essential sup-norm instead.
We want to study geometric properties of the corresponding Miintz se-
quences and spaces. Let us begin with the famous Miintz theorem, [110]:
For E=Cor E= Ly, 1<p< oo, we have

1
[M(A)]g # E if and only if k; <o

(A proof of this fact in more generality will be given in 6.1.)
So, if 3257, 1/Ak < 0o we obtain new Banach spaces [M(A)]g. This sets
the stage for the central problem we discuss in (Part 11 of) our book:

What kind of Banach space [M(A)]r do we obtain depending on the given A
if Yor, 1/ < 00?
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This problem is far from being solved. Here we present the known theorems
and prove new results in this direction. For example, if A is quasilacunary then
[M(A)]L, is isomorphic to [, for 1 < p < oo and [M(A)]¢ is isomorphic to ¢
(Sect. 9.1). But for non-quasilacunary A this is not always the case. There are
at least two different isomorphism classes for [M(A)]¢ (Sect. 10.2). Moreover
there is a continuum of different isometry classes for [M(A)]¢ (Sect. 10.4). In
general, [M(A)]g can be regarded as a sequence space rather than a function
space. [M(A)]r, is always isomorphic to a subspace of [, and [M(A)]¢ is iso-
morphic to a subspace of ¢y provided that the Miintz condition ), 1/Ax < o0
and the gap condition inf(A\r11 — Ax) > 0 are satisfied. In addition, [M(A)],
is always isomorphic to a dual Banach space (Sect. 9.1).

It is an open problem if every [M(A)] g has a basis. We discuss more general
bounded approximation properties in Chap. 9. However, [M(A)]¢ can never
have a monotone basis (Sect. 9.4). In this context it is interesting to note that
M(A) is always a minimal system provided that the Miintz condition holds.
But M(A) is never a basis or even uniformly minimal in [M(A)]g for E = C
or ' = L, unless A is lacunary (Sect. 9.3). In contrast to Miintz sequences
the trigonometric system {z¥}3> _on {z € C : |z| = 1} is uniformly
minimal and even an Auerbach system. The traditional bridge between the
trigonometric system and the classical Miintz system {t"}>° ., the substitution
by Chebyshev polynomials [12], breaks down if we go over to subsequences of
{t"}>°,. So there is no way to relate a general Miintz sequence {t*"}°, to
the trigonometric system.

It is even unknown in general if the finite dimensional Miintz spaces
[M({ Ao, A1,y A })]e have uniformly bounded basis constants. In Sects. 10.3
and 12.2 we discuss some special cases and related questions. In Chap. 12 we
investigate phenomena which, we feel, deserve further investigation. Take a
Miintz sequence {t*}7° |, fix n and put B, = span{t*=+1 ... t*=+n}in C.
Then, for many different A = {A;}3°,, the sequence of n-dimensional Banach
spaces {B,,}2_, converges to the subspace span{t,tlogt,...,t" 'logt} of C
with respect to the logarithm of the Banach-Mazur distance. This might be
helpful for gaining further insight in the isomorphism character of [M(A)]c.
In Chap. 11 we treat more general classes of subspaces of C[0, 1] which have
many common features with [M(A)]c.

It is well-known that there is a close relationship between the theory of
Miintz spaces and fields like approximation theory, harmonic analysis and
functional analysis. The first major contribution to this theory after the sem-
inal papers of Miintz [110] and Szdsz [136] was given by L. Schwartz [128]
and Clarkson and Erdés [19] who established the fact that, for integer A,
each z(t) € [M(A)]c has an analytic continuation to the open complex unit
disk. This means, for example, that [M(A)]c consists entirely of functions
which are real-analytic on ]0, 1[ provided that the Miintz condition and the
gap condition hold! (See Sect. 6.2.)

In our book we want to change the accent from an analytical to a more
geometrical approach and attempt to put well-known and new results into the



Preface X

perspective of a geometrical framework. At the same time we do not pretend
completeness, we rather want to put the emphasis on unsolved problems,
conjectures and ideas according to the taste of the authors. Although there is
a natural overlap in this book with portions from excellent books such as [12]
and [22] we present this material here from our geometric point of view. It
seems to be the first time that Miintz spaces are treated under strict geometric
orientation.

We assume that the reader has a basic knowledge of functional analysis.

The book is divided into two parts and twelve chapters. The first part
contains the preliminary material from the geometry of normed spaces which
is then applied to concrete Miintz spaces in Part Il and which the authors
believe to be promising for further investigation.

Both parts are essentially selfcontained and can be read independently of
each other. In the summary Part I we skip some of the proofs and refer to the
literature instead while, as a rule, in Part II we work out the proofs in full
detail.

But Part I is more comprehensive than necessary for a simple outline of
the preliminaries to Part II. There we give a systematic treatise of classi-
cal Banach space notions such as opening and inclination of subspaces (in
Chap. 1). Moreover we introduce the projection function and projection type
of a Banach space (1.6) and discuss their relation to Banach spaces with or
without bases. Here the study of dispositions of subspaces in Banach spaces
plays the main role.

In Chap. 2 we deal with general sequences in Banach spaces and properties
such as minimality, completeness or stability. After the introduction of basic
notions such as isomorphisms and the Banach-Mazur distance in Chap. 3
we study spaces which are (almost) universal with respect to a given class
of Banach spaces and similar notions for bases in Chap. 4. Finally, Chap. 5
is devoted to a discussion of approximation properties centered around the
commuting bounded approximation property (CBAP).

All our Banach spaces are assumed to be real unless indicated otherwise.
(But almost all proofs in the following can be taken over literally to the
complex case.) If F is a Banach space let E* denote its topological dual
space, i.e. the space of all linear bounded functionals on FE.

Kent, Paderborn Viadimir 1. Gurariy'
May 2005 Wolfgang Lusky

' Supported by Deutsche Forschungsgemeinschaft
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Part I

Subspaces and Sequences in Banach Spaces



2

In the first part of our book we will be concerned with dispositional properties
of a Banach space F, i.e. the geometry of E and its subspaces. They are
important tools for the analysis of £ and the study of phenomena such as
basic decompositions, approximations etc. A special role is played by the
connection between “dispositional” properties (in terms of angles, etc.) and
“distancional” properties (in terms of Banach-Mazur distance) which were
discovered and developed in the sixties, [43,82,116].

In Chap. 1 we introduce the basic notions of the subspace disposition
theory (see [43]) while in Chap. 2 we deal with applications to sequences in
normed spaces. We will mention some often used technical theorems in the
spirit of “planimetry” or “stereometry” in normed spaces.

The emphasis of Chap. 3 lies on isomorphisms and embeddings of Banach
spaces. In Chap. 4 we study Banach spaces with almost universal disposition.
Finally, Chap. 5 is devoted to bounded approximation properties properties of
normed spaces involving various operators of finite rank (FDD, CBAP, etc),
see [99-101].

So Part I is related to questions which, besides being of independent inter-
est, also will lead us to the study of the geometry of Miintz and Miintz-type
sequences in Part I1.
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Disposition of Subspaces

In this chapter we discuss how two or more subspaces in a Banach space affect
each other by their position in a Banach space and we give applications in the
geometry of Banach spaces.

We start with a discussion of well-known different definitions of opening
and relate these notions to the inclination of subspaces. This leads, for exam-
ple, to conditions for the closure of the sum of two subspaces. Finally we focus
on operator theoretic aspects. We introduce projection constants and discuss
the notions of load and projection function which turn out to be important
tools for the analysis of a Banach space.

1.1 Different Definitions of the Opening of Subspaces

M. Krein, M. Krasnoselskii and D. Milman introduced in [74] the following
definition of the opening of two subspaces U and V' in a Banach space E:

O(U.V) = max sup  p(x,V), sup p(y,U)
rel,||z||=1 yeVilyll=1

(Here p(-,-) denotes the distance with respect to the metric given by the
norm. )

A significant part of the applications of this concept is based on the fol-
lowing theorem proved in [74] (see also [44]). Recall, the density character of
a Banach space F is the smallest cardinality of a dense subset of F.

Theorem 1.1.1 Assume that, for the subspaces U and V of E, one of the
following conditions holds:

(i) The density characters of U and V' are different.

(ii) One of the spaces U and V is infinite dimensional and the other one is
finite dimensional.

(i1i) Both spaces are finite dimensional and their dimensions do not coincide.
Then we have
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e, v)>1/2.
If in addition at least one of the subspaces U and V' is finite dimensional or
E is a Hilbert space then O(U,V) = 1.
If £ is a Hilbert space and dim U = dim V then @(U, V') can be quite small
(see 1.3.1).

I. Gohberg and A. Marcus [32] changed the definition of sphere opening
by introducing the spherical opening © in the following way:

O(U,V) = max { sup p(x,Sy), sup p(y, Su)} ;
€Sy yeSy

where Sy is the unit sphere in U, i.e. the set of all elements x € U with
[|z|]| = 1. Analoguously, Sy is defined. They established the following

Theorem 1.1.2 The set of all closed subspaces in a Banach space E s a
complete metric space with respect to the spherical opening @ (U, V') as metric.

It is easy to see that
O, V)<1 and OU,V)<OWU,V)<20(U,V).

(Use the fact that p(x,V) < p(z,Sv) < 2p(z,V) and p(x,U) < p(x,Sy) <
2p(x,U) for ||z]| = 1.) Theorem 1.1.1 and, accordingly, 1.1.2 become incorrect
if one replaces © by @ and @ by O, resp.

Examples. a) Take R? with the Euklidean norm and put U = {(z,0) : x €

R} and V = R2. Then, according to 1.1.1, (U, V) = 1 but O(U,V) = /2.
b) Now let E = R? be endowed with the norm ||(z,y)|| = max(|z|, |y|). Put

U:{(;r,i) : ;BER}, VI{(J.%) : xeR}

and W = {(z,0) : = € R}. An elementary computation shows OW,U) =
1/4, (W, V) =1/2 and O(U,V) = 1/6. Hence
. . 1 .
W, U)+0(U,V) < 3= CIUAS)
which proves that © is not a metric.
Let us introduce a third definition of opening for which the statements of
both theorems are correct.

Definition 1.1.3 [/3] The ball opening of the subspaces U and V in a Ba-
nach space E is defined by the following quantity

ou,V)= max{ sup p(z, By ), sup p(y,BU)} ,
€ By yEBv

where By is the unit ball in U, i.e. the set of all elements x € U with ||z|| <1
and likewise for By .
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We derive from the definitions

Lemma 1.1.4 We have

(a) OW,V)<OWU,V)<1 and
(b) OW,V)<OU,V)<20(U,V).

Proof. (a) is a direct consequence of the definitions.
(b): If ||z|| = 1 and y # 0, then we obtain

le — =l < Hlx =yl + [ 1= lyll | < 2|z —yll -

II I

Hence p(x, Sy) < 2p(x, By ) and, similarly, p(y, Sv) < 2p(y, By ). This implies
eU,V) <20(U,V). For arbitrary = € By with x # 0 we have

Plav] =l "”(H ) <e ()

Su). Hence

and similarly p(y, Bi) < p(y/||1
oW, V) < é)(u, V) <20(U,V). O

If E'is a Hilbert space then p(x, U) is the norm of the orthogonal projection of
x with kernel U. This implies that (U, V) = (U, V) for all closed subspaces
of Hilbert spaces.

Theorem 1.1.5 For the ball opening (U, V') the statements of both Theo-
rems 1.1.1 as well as 1.1.2 are valid.

Proof. The statement of Theorem 1.1.1 for @(U, V) follows from 1.1.1 and
the fact that © < © < 1. To prove the assertion of Theorem 1.1.2 for the
ball opening (U, V'), in view of the inequalities in 1.1.4 (b), it is sufficient to
observe that, again, @ is a metric, i.e. the triangle inequality

O(U,,Us) < O(U,,Uy) + O(U,, Us)

is satisfied. This follows by direct verification. O

1.2 Inclination

Now we discuss a related notion.
Definition 1.2.1 [/3] Let U and V' be subspaces of a Banach space E such
that U # {0}. The inclination of U to V is defined by

(U. V)= inf pa, V).

zel,||x||=1
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If V is spanned by the element x € F we will use the notation (L/f\x) instead
of (U/,T/) Then we speak of the inclination of U to x. Analoguously we define
the inclination of an element to a subspace and the inclination of an element
to an element of .

Let UNV = {0} and let P: U +V — U be the projection with P(u+v) =wv
for all u € U and v € V. Then we easily obtain (U,V) = ||P||~". Indeed

||:r+yn)“: I

Pl = sp U (e S =,
zelU.yeV ||‘T + y“ zeU,yeV ||:E[| (U.. V)

(This even includes the case of unbounded P where (U,V) = 0 and distin-
guishes inclination from many other definitions of “angle between two sub-
spaces”.)

The definition of inclination has wide applications in the theory of bases
(see, for example [53]) which is mainly due to the following criterion proved
by Grinblum in equivalent terms (see [35,36]).

For a given sequence € = {¢;};<, of elements in a Banach space E let us
denote by L; ; the span of e;,e;11.....¢;.

Definition 1.2.2 ¢ is called complete in E if closed span {e;};<, = E.
e is called basis of E if each x € E has a unique representation as r =
Zil «ae; where the series converges in norm.

For more details about these notions see Sects. 2.3-2.5

Theorem 1.2.3 [35] Let e = {e;}°, be a complete system in a Banach
space E such that ey, # 0 for all k. Then the following are equivalent
(i) € is a basis of £

(ii) There is some 3 > 0 such that
(L1, Liy1) >8>0 wheneveri < j

(iii) There is a constant 3 > 0 such that, for all choices of ay,

i J
E QL€ E g€k
k=1

k=1
Proof. The equivalence between (ii) and (iii) follows from the definition of
inclination and the remark following 1.2.1
(i) = (iii): Let x € E, say x = 3o, aiex. Put ||[z|| = sup,, || Xj_; arexl|-
Then, by assumption, ||z|| < |||z]|| < oc. An elementary computation shows
that E is complete under |||-]||. So the open mapping theorem yields a constant
3 > 0, independent of x, with A3|||z||| < ||z|| < |||z|||. Taking z = > _7_, awex
we obtain (iii).
(i71) = (i): Using (iii) we see that

1) < whenever i < j
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oC
{I o= Z arey for some oy with norm converging series}

k=1
is a closed subspace of F. Since € is complete we obtain that every x € E has
a representation of the form x = Y7 | ayey. This representation is unique.
Indeed if 0 = 377 | ey then (iii) implies that oy = 0 for all k. Hence € is a
basis of F. O
The supremum of all 3 in the preceding theorem will be called the index of

the basis {e;}72, and denoted by v({e;}2,).
We also want to define the index y({ex}32 ) for a general sequence in E:

—

Y({ex}rZ1) = inf{(Lii, Liy1y) : i<3j}.

The notion of inclination is non-symmetric, i.e. we have (ﬁ) # (V/,T])
in general. The following proposition gives the value of the “degree of non-
symmetry”.

Proposition 1.2.4 Let U and V be non-zero subspaces of E. If (m) =94
then (V,U) > (1 +6)" 6. If E = C[0,1] then this inequality is sharp for any
6 €10,1].
Proof. Let y € V, ||y|| = 1, x € U. We shall evaluate ||z + y||. Consider two
cases:
Case 1. [|z|| < (1 4+ 4)" . Then

1 )

. >yl =zl 21 - —— = c -
e+l 2 flyll = llell 21 = 705 = 75

Case 2. ||z|| > (1 +6)~'. Then
e+ 31l > pla. V) > (TV)lal] 2 —
z )z, \ T —.
yih =1 - “ 140
The elements z € U and y € V are chosen arbitrarily. Therefore, we have

— 5
‘//’ (] = inf T +, > %
( ) zelUyeV,||yll=1 || y|| Y

To show that this inequality is sharp consider the following two functions
in £ = C[0,1]: z(t) = 1, and y(t) = (1 — &) + 26t. We check directly that
(z,y) = ¢ and (y,z) = (1 4+ )~ '8. Thus the theorem is proved. a
Proposition 1.2.4 and Definition 1.2.1 imply the following

Corollary 1.2.5 If (ﬁ’) > ¢ then, for each x € U and y € V, we have

2+ yl| > max (8ljzll, ——lyll
T + y|| > max xll, 735 Y



